Skip to main content
Log in

Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mnoldTrichoderma reesei. Part B

  • Full Papers
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Paracelsin, a hemolytic and membrane active polypeptide antibiotic of the peptaibol class which is excreted by the moldTrichderma reesei, was obtained by a simplified and isolation procedure utilziing hydrophobic adsorber resin. Investigation by13C nuclear magnetic resonance spectroscopy and circular dichroism revealed considerable helical portions in solution, and the very recently accomplished sequence determination of paracelsin allows the discussion of the results with regard to the closely related analogues, alamethicin and suzukacillin. A selective cleavage of the peptide was achieved by careful treatment with various acids, and a buffer of pH 8.25 and of high ionic strength made possible the quantitative determination of the C-terminal phenylalaninol released by means of ion-exchange chromatography. The significance of the production of paracelsin and related mycotoxins of the peptaibol class, exhibiting various kinds of biological activity, is discussed with respect to the extensive effort being made towards biotechnological applications of species, strains and cellulolytically highly active mutants of the fungusTrichoderma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aydin, M., Bloos, D. H., König, W. A., Brückner, H., and Jung, G., Localization of the amide function in the sequence of peptide antibiotic trichotoxin A 40. Biomed. Mass Spectrom.9 (1982) 39–42.

    Article  CAS  Google Scholar 

  2. Bailey, M. J., and Nevalainen, K. M. H., Induction, isolation and testing of stableTrichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microb. Technol.3 (1981) 153–157.

    Article  CAS  Google Scholar 

  3. Besch, H. R. Jr., Jones, L. R., Fleming, J. W., and Watanabe, A. M., Parallel unmasking of latent adenylase cyclase and (Na+, K+)-ATPase activities in sarcolemmal vesicles. J. biol. Chem.252 (1977) 7905–7908.

    Article  CAS  PubMed  Google Scholar 

  4. Bessler, W. G., Ottenbreit, B., Irmscher, G., and Jung, G., Interaction of membrane modifying peptide antibiotics fromTrichoderma viride with leukocytes. Biochem. biophys. Res. Commun.87 (1979) 99–105.

    Article  CAS  PubMed  Google Scholar 

  5. Boheim, G., Hanke, W., and Jung, G., Alamethicin pore formation: Voltage-dependent flip-flop of α-helix dipoles. Biophys. Struct. Mechs9 (1983) 181–191.

    Article  CAS  Google Scholar 

  6. Bonnafous, J.-C., Dornand, J., and Mani, J.-C., Detergent-like effects of alamethicin on lymphocyte plasma membranes. Biochem. biophys. Res. Commun.86 (1979) 536–544.

    Article  CAS  PubMed  Google Scholar 

  7. Bosch, R., Brückner, H., Jung, G., and Winter, W., (−)-Isovaline: Confirmation of its D-(=R)-configuration by X-ray analysis of its N-chloroacetyl derivative. Tetrachedron38 (1982) 3579.

    Article  CAS  Google Scholar 

  8. Brewer, D., Clader, F. W., MacInctyre, T. M., and Taylor, A., Ovine ill-thrift in Nova Scotia. I. The possible regulation of the rumen flora in sheep by the fungal flora of permanent pasture. J. agric. Sci., Camb.76 (1971) 465–477.

    Article  Google Scholar 

  9. Brewer, D., Taylor, A., and Hoehn, M. M., Ovine ill-thrift in Nova Scotia. II. The production of antibiotics by fungi isolated from forest and marshland soil. J. agric. Sci., Camb.78 (1972) 257–264.

    Article  Google Scholar 

  10. Brückner, H., Trichotoxin, A-40: Isolierung, Sequenzierung und Konformationsuntersuchungen eines membranmodifizierenden Polypeptid-Antibiotikums. Thesis. Universität Tübingen, FRG 1979.

    Google Scholar 

  11. Brückner, H., and Graf, H., Paracelsin, a peptide antibiotic containing α-aminoisobutyric acid, isolated fromTrichoderma reesei Simmons. Part A. Experientia39 (1983) 528–530.

    Article  PubMed  Google Scholar 

  12. Brückner, H., and Jung, G., Identification of N-acetyl-α-amino-isobutyric acid after selective trifluoroacetolysis of alamethicin and related peptide antibiotics. Chromatographia13 (1980) 170–174.

    Article  Google Scholar 

  13. Brückner, H., Jung, G., Synthesis of L-Prolyl-leucyl-α-aminoisobutyryl-α-aminoisobutyryl-valinol and proof of identity with the isolated C-terminal fragment of trichotoxin A-40. Justus Liebigs Annln Chem. (1982) 1677–1699.

  14. Brückner, H., Jung, G., Hanke, W., and Boheim, G., Structural requirements for membrane modifying activity in alamethiciin type antibiotics, in: Abstract of the Annual Meeting of the Deutsche Gesellschaft für Biophysik, Konstanz, FRG, p. 55. Eds G. Adam and G. Stark, Springer-Verlag, Berlin, Heidelberg, New York 1979.

    Chapter  Google Scholar 

  15. Brückner, H., Jung, G., and Przybylski, M., Chromatographic and mass spectrometric characterization of the structures of the polypeptide antibiotics samarosporin and stilbellin and identity with emerimicin. Chromatographia17 (1983) 679–685.

    Article  Google Scholar 

  16. Brückner, H., König, W. A., Greiner, M., and Jung, G., The sequences of the membrane-modifying peptide antibiotic trichotoxin A-40. Angew. Chem.91 (1979) 508–509; Angew. Chem. B18 (1979) 476–477.

    Article  Google Scholar 

  17. Brückner, H., and Przybylski, M., Isolation and structural characterization of polypeptide antibiotics of the peptaibol class by highperfomance liquid chromatography with field desorption and fast atom bombardment mass spectrometry. J. Chromat.296 (1984) 263–275.

    Article  Google Scholar 

  18. Doddrell, D. M., Pegg, D. T., and Bendall, M. R., Distortionless enhancement of NMR signals by polarization transfer. J. Magn. Res.48 (1982) 323–327.

    CAS  Google Scholar 

  19. Famey, J. P., and Whitehouse, M. W., About some possible anti-inflammatory properties of various membrane permeant agents. Agents Actions5 (1975) 133–136.

    Article  Google Scholar 

  20. Ghose, T. K., and Sahai, V., Production of cellulases byTrichoderma reesei QM 9414 in fed-batch and continuous-flow culture with cell recycle. Biotechn. Bioengng21 (1979) 283–296.

    Article  CAS  Google Scholar 

  21. Gisin, B. F., Kobayashi, S., Davis, D. G., and Hall, J. E., Synthesis of biologically active alamethicin, in: Peptides, Proceedings of the Fifth American Peptide Symposium, p. 215–217. Eds M. Goodman and J. Meienhofer. John Wiley and Sons, New York 1977.

    Google Scholar 

  22. Goksøyr, J., Eidså, G., Eriksen, J., and Osmundsvåg, K., A comparison of cellulases from different microorganisms, in: Symposium on enzymatic hydrolysis of cellulose, pp. 217–230. Eds M. Bailey, T. M. Enari and M. Linko. The Finnish National Fund for Research and Development (SITRA). Helsinki 1975.

    Google Scholar 

  23. Humphrey, A. E., Economics and utilization of enzymatically hydrolyzed cellulose, in: lit. pp. 437–453.

    Google Scholar 

  24. Irmscher, G., and Jung, G., Die hämolytischen Eigenschaften der membranmodifizierenden Peptidantibiotika Alamethicin, Suzukacillin und Trichotoxin. Eur. J. Biochem.80 (1977) 165–174.

    Article  CAS  PubMed  Google Scholar 

  25. Jung, G., Brückner, H., Bosch, R., Winter, W., Schaal, H., and Strähle, J., Ac-L-Ala-Aib-L-Ala-OMe: X-ray analysis of a distorted β-bend and magnetic nonequivalence of Aib-methyl groups. Justus Liebigs Annln Chem. (1983) 1096–1106.

  26. Jung, G., Brückner, H., Oekonomopulos, R., Boheim, G., Breitmeier, E., and König, W. A., Structural requirements for pore formation in alamethicin and analogs, in: Peptides: Proceedings of the Sixth American Peptide Symposium, pp. 647–654. Eds E. Gross and J. Meienhofer, Pierce Chem. Co., Rockford, III. 1979.

    Google Scholar 

  27. Jung, G., Dubischar, N., and Leibfritz, D., Conformational changes of alamethicin induced by solvent and temperature. Eur. J. Biochem.54 (1975) 395–409.

    Article  CAS  PubMed  Google Scholar 

  28. Jung, G., König, W. A., Leibfritz, D., Ooka, T., Janko, K., and Boheim, G., Structural and membrane modifying properties of suzukacillin, a peptide antibiotic related to alamethicin. Part A. sequence and conformation. Biochim. biophys. Acta433 (1976) 164–181.

    Article  CAS  PubMed  Google Scholar 

  29. Katz, E., Suzukacillin, A.: Sequenzierung und Konformationsuntersuchungen eines membranmodifizierten Eikosapeptids. Thesis, Universität Tübinger, FRG 1983.

    Google Scholar 

  30. Kleinkauf, H., and Rindfleisch, H., Non-ribosomal biosynithesis of the cyclic octadecapeptide alamethicin. Acta microbiol. Acad. Sci. hung.22 (1975) 411–418.

    CAS  PubMed  Google Scholar 

  31. Lau, A. L. Y., and Chan, S. I., Alamethicin-mediated fusion of lecithin vesicles. Proc. natl Acad. Sci. USA72 (1975) 2170–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mandels, M., Microbial sources of cellulase, in: Cellulose as a chemical and energy resource, pp. 81–105. Ed. C. R. Wilke. John Wiley and Sons, New York 1975.

    Google Scholar 

  33. Mandels, M., Hontz, L., and Nystrom, J., Enzymatic hydrolysis of waste cellulose. Biotechn. Bioengng16 (1974) 1471–1493.

    Article  CAS  Google Scholar 

  34. Mandels, M., Weber, J., and Parizek, R., Enhanced cellulase production by a mutant ofTrichoderma viride. Appl. Microbiol.21 (1971) 152–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meyer, C. E., and Reusser, F., A polypeptide antibacterial agent isolated fromTrichoderma viride. Experientia23 (1967) 85–86.

    Article  CAS  PubMed  Google Scholar 

  36. Montenecout, B. S., and Eveleigh, D. E., Preparation of mutants ofTrichoderma reesei with ehanced cellulase production. Appl. envir. Microbiol.34 (1977) 777–782.

    Article  Google Scholar 

  37. Moo-Young, M., Moreira, A. R., and Tengerdy, R. P., Principles of solid-substrate fermentation, in: The Filamentous Fungi, vol. IV pp. 117–144. Eds J. E. Smith, D. R. Berry and B. Kristiansen. Edward and Arnold, London 1983.

    Google Scholar 

  38. Mueller, P., and Rudin, D. O., Action potentials induced in biomolecular lipid membranes. Nature217 (1986) 713–719.

    Article  Google Scholar 

  39. Ooka, T. Shimojima, Y., Akimoto, T., Takeda, I., Senoh, S., and Abe, T., A new antibacterial peptide ‘suzukacillin’. Agric. biol. Chem.30 (1966) 700–702.

    Article  CAS  Google Scholar 

  40. Ovchinnikov, Y. A., Kiryushkin, A. A., and Kozhevnikova, I. V., Mass-spectrometric determination of the amino acid sequence in peptides. Gen. Chem., USSR41 (1971) 2105–2116; translated from Zh. Obshch. Khim.41 (1971) 2085–2099.

    Google Scholar 

  41. Pandey, R. C., Cook, J. C. Jr, and Rinehart, K. L. Jr, Structures of the peptide antibiotics emerimicins III and IV. J. Am. chem. Soc.99 (1977) 5205–5206.

    Article  CAS  PubMed  Google Scholar 

  42. Pandey, R. C., Cook, J. C. Jr, and Rinehart, K. L. Jr, High resolution and field desorption mass spectrometry studies and revised structures of alamethicins I and II. J. Am. Chem. Soc.99 (1977) 8469–8483.

    Article  CAS  Google Scholar 

  43. Pandey, R. C., Meng, H., Cook, J. C. Jr, and Rinehart, K. L. Jr, Structure of antiamoebin I from high resolution field desorption and gas chromatographic mass spectrometry studies. J. Am. chem. Soc.99 (1977) 5203–5205.

    Article  CAS  PubMed  Google Scholar 

  44. Payne, J. W., Jakes, R., and Hartley, B. S., The primary structure of alamethicin. Biochem. J.117 (1970) 757–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pressman, B. C., Ionophorous antibiotics as models for biological transport. Fedn Proc.27 (1968) 1283–1288.

    CAS  Google Scholar 

  46. Przybylski, M., Fast atom bombardment and field desorption mass spectrometry: Comparative aspects of analytical development and bioanalytical application. Z. analyt. Chem.315 (1983) 402–421 and literature cited therein.

    Article  CAS  Google Scholar 

  47. Przybylski, M., Manz, I., Dietrich, I., and Brückner, H., Elucidation of structure and microheterogeneity of the polypeptide antibotics paracelsin and trichotoxin A-50 by fast atom bombardment mass spectrometry in combination with selective in situ hydrolysis. Biomed. Mass Spectrom, in press (1984).

  48. Raistrick, H., and Rudmann, P., Studies in thebiochemistry of micro-organisms. Biochem. J.63 (1956) 395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reusser, F., Biosynthesis of antibiotic U-22,324, a cyclic polypeptide. J. biol. Chem.242 (1967) 243–247.

    Article  CAS  PubMed  Google Scholar 

  50. Simmons, E. G., Classification of some cellulase-producingTrichoderma species, p. 618. Abstract of the Second International Mycological Congress, Tampa, Florida, USA (1977).

  51. Thirumalachar, M. J., Antiamoebin, a new antiprotozoal-anthelmintic antibiotic. Part I. Production and biological studies. Hindustan antibiot. Bull.10 (1968) 287–289.

    CAS  Google Scholar 

  52. Toyama, N., Feasibility of sugar production from agricultural and urban cellulosic wastes withTrichoderma viride cellulase, in: Enzymatic conversion of cellulosicmaterials: Technology and application, pp. 207–219. Eds E. L. Gaden, Jr, M. H. Mandels, E. T. Reese and L. A. Spanol, John Wiley and Sons, New York 1976.

    Google Scholar 

  53. Toyama, N., and Ogawa, K., Utilization of cellulosic wastes byTrichoderma viride, in: Fermentation Technology Today, Proceedings of the IVth International Fermentation symposium, pp. 743–757. Society of Fermentation Techology, Japan 1972.

    Google Scholar 

  54. Toyama, N., and Ogawa, K., Sugar production from agricultural woody wastes by saccharification withTrichoderma viride cellulase, in: lit.

    Google Scholar 

  55. Note added in proof. This prediction was very recently established by the detection that the moldsGliocladium deliquescens andStilbella erythrocephala produce peptaibols, and the characterization of new components found in hypelcin20. Brückner, H., and Przybylski, M. Detection, isolation, sequence determination and biological properties of “peptaibols”, a class of membrane active polylogical properties of “peptaibols”, a class of membrane active polypeptides produced by microfungi, in: Proceedings of the 6th European Symposium on Animal, Plant and Microbial Toxins, p. 81. Eds J. Meier, K. Stocker and T. A. Freyvogel. Basel 1984; Brückner, H., and Przybylski, M., Methods for the rapid detection, isolation and sequence determination of “peptabols” and other Aib-containing peptides of fungal origin, in: Abstracts of the 15th International Symposium on Chromatography, Nürnberg, FRG, October 1–5, 1984, abstract 3PF-04; Fujita, T., Takaishi, y., Matsuura, K., Takeda, Y., Yoshioka, Y., and Brückner, H., Further investigation of peptide antibiotic, hypelcin A: Isolation structures of hypelcins A-I, A-II, and A-IV. Chem. pharm. Bull., Japan32 (1984) 2870–2873.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgment. We thank I. Ackermann for excellent and skilled technical assistance and gratefully acknowledge the help of R. Ratz for support in CD spectroscopy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brückner, H., Graf, H. & Bokel, M. Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mnoldTrichoderma reesei. Part B. Experientia 40, 1189–1197 (1984). https://doi.org/10.1007/BF01946646

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01946646

Key words

Navigation