Skip to main content
Log in

Transgenic tobacco plants which express thechiA gene fromSerratia marcescens have enhanced tolerance toRhizoctonia solani

  • Papers
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

We have prepared independent lines of transgenic tobacco plants which express high levels of theSerratia marcescens ChiA protein intracellulary or extracellularly (in glycosylated or unglycosylated forms). We have measured the susceptibility, of these plants toRhizoctonia solani infection in greenhouse trials and in the field. Transgenic tobacco plants which constitutively express theS. marcescens ChiA protein exhibit tolerance to the fungal pathogenR. solani. Disease tolerance is observed in transgenic tobacco plants which express the bacterial chitinase intra-or extracellulary. This is the first report to document disease reduction in the field in transgenic plants engineered for fungal disease tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahl Goy, P., Felix, G., Metraux, J.P. and Meins, F.J. (1992) Resistance to disease in the hybridNicotiana glutinosa × Nicotiana debneyi is associated with high constitutive levels of β-1,3-glucanase, chitinase, peroxidase and polyphenoloxidase.Physiol. Mol. Pl. Pathol. 41, 11–21.

    Google Scholar 

  • Boller, T. (1987) Hydrolytic enzymes in plant disease resistance. Plant-microbe interactions, molecular and genetic perspectives.2, 385–413.

    Google Scholar 

  • Boller, T. (1988) Ethylene and the regulation of antifungal hydrolases in plants.Oxford Surveys Pl. Mol. Cell Biol. 5, 145–74.

    Google Scholar 

  • Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Kowlton, S., Mauvais, C.J. and Broglie, R. (1991) Transgenic plants with enhanced resistance to the fungal pathogenRhizoctonia solani. Science 254, 1194–7.

    Google Scholar 

  • Collinge, D.B., Kragh, K.M., Mikkelsen, J.D., Nielsen, K.K., Rasmussen, U. and Vad, K. (1993) Plant chitinases.Pl. J. 3, 31–40.

    Google Scholar 

  • Depicker, A., Stachel, S., Dhaese, P., Zambryski, P. and Goodman, H.M. (1982) Nopaline synthese: transcript mapping and DNA sequence.J. Mol. Appl. Genet. 1, 561–73.

    Google Scholar 

  • Harpster, M., Townsend, J.A., Jones, J.G.D., Bedbrook, J. and Dunsmuir, P. (1988) Relative strengths of the 35S cauliflower mosaic virus 1′, 2′, and noplaline synthase promoters in transformed tobacco, sugarbeet and oilseed rape callus tissue.Mol. Gen. Genet. 212, 182–90.

    Google Scholar 

  • Howie, W.J. and Suslow, T.V. (1991) Role of antibiotic biosynthesis in fungal inhibition in the cotton spermosphere and rhizosphere.Mol. Pl.-Microbe Interaction 4, 393–9.

    Google Scholar 

  • Hull, R. (1980) Structure of the cauliflower mosaic virus genome. III Restriction endonuclease mapping of thirty-three isolates.Virol. 100, 76–90.

    Google Scholar 

  • Inbar, J. and Chet, I. (1991) Evidence that chitinase produced byAeromonas caviae is involved in biological control of soilborne plant pathogens by this bacterium.Soil Biology Biochemistry 23, 973–8.

    Google Scholar 

  • Jones, J.D.G., Grady, K.L., Suslow, T. and Bedbrook, J. (1986) Isolation and characterization of genes encoding chitinase fromSerratia marcescens.EMBO J. 5, 467–473.

    Google Scholar 

  • Jones, J.D.G., Shlumukov, L., Carland, F., English, J., Scofield, S.R., Bishop, G.J. and Harrison, K. (1992) Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants.Transgenic Res. 1, 285–97.

    Google Scholar 

  • Linthorst, H.J.M., Loon, L.C. van, Rossum, C.M.A. van, Mayer, A., Bol, J.F., Roekel, J.S.C. van, Meulenhoff, E.J.S. and Cornelissen, B.J.C. (1990) Analysis of acid and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco.Mol. Pl. Microbe Interactions 3, 252–8.

    Google Scholar 

  • Lund, P. and Dunsmuir, P. (1992) A plant, signal sequence enhances the secretion of bacterial ChiA in transgenic tobacco.Pl. Mol. Biol. 88, 47–53.

    Google Scholar 

  • Lund, P., Lee, R.Y. and Dunsmuir, P. (1989) Bacterial chitinase is modified and secreted in transgenic tobacco.Pl. Physiol. 91, 130–5.

    Google Scholar 

  • Molano, J., Polacheck, I., Duran, A. and Cabib, E. (1979) An endochitinase from wheat germ; activity on nacent and preformed chitin.J. Biol. Chem. 254, 4901–7.

    Google Scholar 

  • Monreal J. and Reese, E.T. (1969) The chitinase ofSerratia marcescens.Can. J. Microbiol. 15, 689–96.

    Google Scholar 

  • Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture.Physiol. Plant. 15, 473–97.

    Google Scholar 

  • Neuhaus, J.-M., Ahl-Goy, P., Hinz, U., Flores, S. and Meins, F.J. (1991) Highlevel expression of a tobacco chitinase gene inNicotiana sylvestris. Susceptibility of transgenic plants toCercospora nicotianae infection..Pl. Mol. Biol. 16, 141–51.

    Google Scholar 

  • Punja, Z.K., and Zhang, Y. (1993) Chitinases in plants and their roles in resistance to fungal disease.J. Nemat. in press.

  • Roberts, R.L. and Cabib, E. (1982)Serratia marscescens chitinase; one step purification and use for the determination of chitin.Anal. Biochem. 127, 402–12.

    Google Scholar 

  • Roberts, W.K. and Selitrennikoff, C.P. (1988) Plant and bacterial chitinases differ in antifungal activity.J. Gen. Microbiol. 134, 169–76.

    Google Scholar 

  • Schlumbaum, A., Mauch, F., Vogeli, U. and Boller, T. (1986) Plant chitinases are potent inhibitors of fungal growth.Nature 324, 365–7.

    Google Scholar 

  • Sela-Buurlage, M.B., Ponstein, A.S., Bres-Vloemans, S.A., Melchers, L.S., Elzen, P.J.M. van den and Cornelissen, B.J.C. (1993) Only specific tobacco (Nicotiana tabacum) chitinases and B-1,3-glucanases exhibit antifungal activity.Pl. Physiol. 101, 857–63.

    Google Scholar 

  • Shapira, R., Ordentlich, A., Chet, I. and Oppenheim, A.B. (1989) Control of plant diseases by chitinase expressed from cloned DNA inE. coli.Phytopathology.79, 1246–9.

    Google Scholar 

  • Van Loon, L.C. (1985) Pathogenesis-related proteins.Pl. Mol. Biol. 4, 111–6.

    Google Scholar 

  • Vierheilig, H., Alt, M., Neuhaus, J., Boller, T. and Wieken, A. (1993) Colonization of transgenicN. sylvestris plants, expressing different forms ofN. tabacum chitinase, by the root pathogenRhizoctonia solani and by the mycorrhizal symbiontGlomus mosseae.Mol. Pl.-Microbe Interactions,6, 261–4.

    Google Scholar 

  • Wessels, J.G.H. and Sietsma, J.H. (1981) Fungal cell walls: a survey. In Tanner, W. and Loewus, F.A. (eds)Encyclopedia of Plant Physiology, New Series Plant Carbohydrates II. Berlin: Springer, pp. 352–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howie, W., Joe, L., Newbigin, E. et al. Transgenic tobacco plants which express thechiA gene fromSerratia marcescens have enhanced tolerance toRhizoctonia solani . Transgenic Research 3, 90–98 (1994). https://doi.org/10.1007/BF01974086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01974086

Keywords

Navigation