Skip to main content
Log in

Different kinetic equations analysis

  • Special Review
  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

A software is described enabling kinetic analysis under non-isothermal or isothermal conditions from DSC, or from TG data. The program offers thirteen methods of kinetic analysis for DSC, three for isothermal analysis and two for TG, with eight different functions for the choice of the proper mechanism for each of them.

Zusammenfassung

Cu(II)-komplexe von Acenaphthoquinonmono-(4-methyl-quinolinyl)-hydrazon (AMH) der allgemeinen Zusammensetzung [CuLX2] (mitL=AMH;X=Cl, Br, I, OAc oder NO3) -ausgenommen die Sulfato-komplexe, die über die allgemeine Zusammensetzung [CuLSO4]2 verfügen — wurden hergestellt und mittels Elementaranalyse, Messungen des magnetischen Momentes, Leitfähigkeitsmessungen, IR, elektronen- und EPR-spektroskopischen Techniken und durch Thermoanalyse untersucht. Für alle Komplexe wurde eine planare Geometrie gefunden. Die TG-Kurven zeigen, daß die Komplexe in einem Schritt zersetzt werden, wobei am Ende dieses Schrittes CU2O gebildet wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

E a :

activation energy (kJ · mol−1)

k(T) :

specific rate constant (s−1)

k o :

pre-exponential factor (s−1)

R :

universal gas constant (8.314 kJ · mol−1· K·−1

V :

scanning rate (K· s−1)

T :

absolute temperature (K)

T p :

top of peak temperature (K)

α:

degree of conversion

αp :

degree of conversion to the top of the peak

αm :

degree of conversion corresponding to the maximum of the peak functiony(α)

m, n, p :

kinetic exponents

y(α):

standardized curve (see [14])

dα/dt :

reaction rate (s−1)

dH/dt :

heat flow (and also Y) (mW)

H i :

partial enthalpy at the temperatureT i (J/g)

Q t :

total enthalpy (J/g)

ΔH i :

Q t-H i (J/g)

k for :

constant rate of the forward reaction (s−1)

k rev :

constant rate of the reverse reaction (s−1)

ΔG :

Gibbs free energy (J/g)

t :

time (s)

T iso :

isothermal temperature (K)

x :

E a/RT

w :

weight loss (mg)

W i :

initial weight (mg)

w f :

final weight (mg)

References

  1. F. Wilmet, N. Sbirrazzouli, Y. Girault and L. Elégant, J. Thermal Anal., to be published.

  2. K. Kretzschmar and K. W. Hoffmann, Thermochim. Acta, 83 (1985) 139.

    Article  Google Scholar 

  3. G. M. Kerch and L. A. Irgne, J. Thermal Anal., 36 (1990) 129.

    Article  Google Scholar 

  4. A. V. Khabenko and S. A. Dolmatov, J. Thermal Anal., 36 (1990) 45.

    Article  Google Scholar 

  5. C. Rozycki and M. Maciezewski, Thermochim. Acta, 91 (1985) 91.

    Article  Google Scholar 

  6. J. M. Criado, J. Morales, Thermochim. Acta, 16 (1976) 382.

    Article  Google Scholar 

  7. Y. S. Yang and L. J. Lee, Calorim. Anal. Therm., 19 (1988) 3.1.

    Google Scholar 

  8. T. Ozawa, J. Thermal Anal., 2 (1970) 301.

    Article  Google Scholar 

  9. C. D. Doyle, J. Appl. Polym. Sci., 6 (1962) 639.

    Article  Google Scholar 

  10. H. E. Kissinger, Anal. Chem., 29 (1957) 1702.

    Article  Google Scholar 

  11. P. Tomi, Thèse de Sciences de l'Ingénieur, (N.R.) Université de Nice, juillet 1988.

  12. A. Lucci, in ‘Principi ed Applicazioni di Calorimetria et di Analisi Termica’, Eds G. Delia Gatta, A. Lucci, Piccin Nuova Libraria, Padova 1984.

    Google Scholar 

  13. J. Zsakó, J. Thermal Anal., 5 (1973) 239.

    Google Scholar 

  14. J. Malek, Thermochim. Acta, 138 (1989) 337.

    Article  Google Scholar 

  15. W. Wendlandt, Thermal Analysis, John Wiley and Sons, New York 1986.

    Google Scholar 

  16. V. M. Gorbatchev, J. Thermal Anal., 27 (1983) 151.

    Article  Google Scholar 

  17. M. Avrami, J. Chem. Phys., 7 (1939) 1103.

    Article  Google Scholar 

  18. M. Avrami, J. Chem. Phys., 8 (1940) 212.

    Article  Google Scholar 

  19. J. Šestak, Thermochim. Acta, 3 (1971) 1.

    Article  Google Scholar 

  20. H. J. Borchardt and F. Daniels, J. Amer. Chem. Soc., 79 (1957) 41.

    Article  Google Scholar 

  21. J. Šestak, V. Šatawa and W. Wendlandt, Thermochim. Acta, 7 (1973) 333.

    Article  Google Scholar 

  22. B. B. Achar, G. W. Brindley and J. H. Sharp, Proc. Int. Clay Conf. Jerusalem, Ed. Heller & Weiss, 1 (1966) 67.

  23. E. S. Freeman and B. Caroll, J. Phys. Chem., 62 (1958) 394.

    Article  Google Scholar 

  24. K. K. Aranvindakshan and K. Muraleedharan, Thermochim. Acta, 146 (1989) 149.

    Article  Google Scholar 

  25. K. K. Aranvindakshan and K. Muraleedharan, Thermochim. Acta, 140 (1989) 325.

    Article  Google Scholar 

  26. J. H. Flynn and L. A. Wall, J. Res. Nat. Bur. Stand., 70A (1966) 487.

    Google Scholar 

  27. S. M. Ellerstein, in ‘Analytical Chemistry’, Eds R. S. Porter and J. F. Johnson, Plenum Press, New York 1968, p. 279.

    Google Scholar 

  28. A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.

    Google Scholar 

  29. V. Šatava, Thermochim. Acta, 2 (1971) 423.

    Article  Google Scholar 

  30. J. Zsakó, J. Phys. Chem., 72 (1968) 2406.

    Article  Google Scholar 

  31. J. Zsakó, J. Thermal Anal., 2 (1970) 145.

    Article  Google Scholar 

  32. J. R. MacCallum and I Tanner, Eur. Polym. J., 6 (1970) 1033.

    Article  Google Scholar 

  33. J. Šestak, Thermochim. Acta, 3 (1971) 150.

    Article  Google Scholar 

  34. M. C. Ball and H. J. Casson, Thermochim. Acta, 27 (1978) 387.

    Article  Google Scholar 

  35. L. Battezzani, A. Lucci and G. Riontino, Thermochim. Acta, 23 (1978) 213.

    Article  Google Scholar 

  36. M. E. Brown and A. K. Galwey, Thermochim. Acta, 29 (1979) 129.

    Article  Google Scholar 

  37. J. M. Criado and J. Morales, Thermochim. Acta, 19 (1977) 305.

    Article  Google Scholar 

  38. H. Tanaka, Thermochim. Acta, 48 (1981) 137.

    Article  Google Scholar 

  39. K. N. Ninan, Thermochim. Acta, 74 (1984) 143.

    Article  Google Scholar 

  40. Z. Smieszek, Z. Kolendo, J. Norwisz and N. Hadjuk, J. Thermal Anal., 25 (1982) 377.

    Article  Google Scholar 

  41. D. W. Johnson and P. K. Gallagher, J. Phys. Chem., 75 (1971) 1179.

    Article  Google Scholar 

  42. V. Djakovitch and T. Romanovska, J. Thermal Anal., 9 (1976) 9.

    Google Scholar 

  43. M. D. Judd and A. C. Norris, J. Thermal Anal., 5 (1973) 179.

    Article  Google Scholar 

  44. J. P. Elder, J. Thermal Anal., 29 (1984) 1327.

    Google Scholar 

  45. R. K. Agrawal, J. Thermal Anal., 31 (1986) 1253.

    Article  Google Scholar 

  46. R. Sakamoto, M. Kamimoto, Y. Takahashi, Y. Abe, K. Kanari and T. Ozawa, Thermochim. Acta, 77 (1984) 241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sbirrazzuoli, N., Brunel, D. & Elegant, L. Different kinetic equations analysis. Journal of Thermal Analysis 38, 1509–1524 (1992). https://doi.org/10.1007/BF01975082

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01975082

Keywords

Navigation