Skip to main content
Log in

Hypergravity promotes cell proliferation

  • Full Papers
  • Published:
Experientia Aims and scope Submit manuscript

Summary

When HeLa cells, chicken embryo fibroblasts, sarcoma Galliera cells, Friend leukemia virus transformed cells and human lymphocytes are cultured in a hypergravitational field (e.g. 10×g) proliferation rate is increased by 20–30%, whereas glucose consumption per cell is lower than at 1×g. Tracking of cell movements on gold-coated substrates reveals that cell migration is hindered at high-g. These findings suggest that under gravitational stress the cell is either capable of shifting to other metabolic pathways and/or consumes less energy at high-g than at 1×g. This work describes ground-based investigations related to experiments to be performed on future Spacelab missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cogoli, A., and Tschopp, A., Biotechnology in space laboratories. Adv. biochem. Engng22 (1982) 1–50.

    Google Scholar 

  2. Konstantinova, I. V., Antropova, Ye. N., Legen'kov, V. I., and Zazhirey, V. D., Study of the reactivity of blood lymphoid cells in crew members of the Soyuz-6, Soyuz-7 and Soyuz-8 spaceships before and after flight. Space Biol. Med.7 (1973) 48–55.

    Google Scholar 

  3. Kimzey, S. L., Hematology and immunology studies, in: Biomedical results from Skylab, pp. 249–282. Eds R. S. Johnston and L. F. Dietlein. NASA SP-377, NASA, Washington, D.C., 1977.

    Google Scholar 

  4. Cogoli, A., Hematological and immunological changes during space flight. Acta astronautica8 (1981) 995–1002.

    Article  CAS  PubMed  Google Scholar 

  5. Taylor, G. R., Hematological and immunological analyses, in: STS-1 medical report, pp. 51–52. Eds S. L. Pool, P. C. Johnson, Jr, and J. A. Mason. Eds NASA Technical Memorandum 58240. NASA, Johnson Space Center, Houston 1981.

    Google Scholar 

  6. Cogoli, A., Valluchi-Morf, M., Boehringer, H. R., Vanni, M. R., and Müller, M., Effect of gravity on lymphocyte proliferation, in: Life sciences and space research, pp. 219–224. Ed. R. Holmquist. COSPAR, Pergamon Press, Oxford 1979.

    Chapter  Google Scholar 

  7. Cogoli, A., Valluchi-Morf, M., Müller, M., and Briegleb, W., Effect of hypogravity on human lymphocyte activation. Aviat. Space environ. Med.51 (1980) 29–34.

    CAS  PubMed  Google Scholar 

  8. Knight, T. A., On the direction of the radical and germen during vegetation of seeds. Phil. Trans. R. Soc. London96 (1806) 99–108.

    Google Scholar 

  9. Shimamura, T., Studies on the effect of the centrifugal force upon nuclear division. Cytologia11 (1940) 186–216.

    Article  Google Scholar 

  10. Montgomery, P. O'B. Jr, Cook, J. E., Reynolds, R. C., Paul, J. S., Hayflick, L., Stock, D., Shulz, W. W., Kimzey, S., Thirolf, R. G., Rogers, T., Campell, D., and Murrell, J., The response of single human cells to zero gravity, in: Biomedical results from Skylab, pp. 221–234. Eds R. S. Johnston and L. F. Dietlein. NASA SP-377, NASA, Washington, D.C. 1977.

    Google Scholar 

  11. Anderson, M., in: Biospex: Biological space experiments. A compendium of life sciences experiments carried on U.S. spacecraft. Eds J. A. Rummel and S. Deutsch. NASA Technical Memorandum 58217, 1979.

  12. Buderer, M. D., in: Russian Biospex: Biological space experiments, a space life sciences bibliography. NASA, Johnson Space Center, Houston 1981. JSC-17072.

    Google Scholar 

  13. Boyum, A., Isolation of lymphocytes, granulocytes and macrophages. Scand. J. Immun.5 (1976) Suppl. 5, 9–15.

    Article  Google Scholar 

  14. Pippia, P., Cogoli, A., Gaias, M., Piras, G., and Ivaldi, G., Determination of adhesive rate constant in normal and neoplastic homogeneic cells. Experientia37 (1981) 698–700.

    Article  CAS  PubMed  Google Scholar 

  15. Conscience, J. F., and Meier, W., Coordinate expression of erythroid marker enzymes during dimethylsulfoxide-induced differentiation of Friend erythroleukemia cells. Exp. Cell Res.125 (1980) 111–119.

    Article  CAS  PubMed  Google Scholar 

  16. Albrecht-Buehler, G., and Lancaster, R. M., A quantitative description of the extension and retraction of surface protrusions in spreading 3T3 mouse fibroblasts. J. Cell Biol.71 (1976) 370–382.

    Article  CAS  PubMed  Google Scholar 

  17. Banauch, D., Brümmer, W., Ebeling, W., Metz, H., Rindfrey, H., and Lang, H., Eine Glucose-Dehydrogenase für die Glucose-Bestimmung in Körperflüssigkeiten. Z. klin. Chem. klin. Biochem.13 (1975) 101–107.

    CAS  PubMed  Google Scholar 

  18. Izzard, C. S., and Lochner, L. R., Cell-to-substrate contacts in living fibroblasts: An interference reflexion study with an evaluation of technique. J. Cell Sci.21 (1976) 129–159.

    Article  CAS  PubMed  Google Scholar 

  19. Adams, R. L. P., Use of radioactive isotopes in cell culture, in: Cell culture for biochemists, pp. 181–203. Elsevier/North-Holland Biomedical Press, Amsterdam, New York, Oxford 1980.

    Google Scholar 

  20. Ling, N. R., and Kay, J. E., DNA synthesis and the cell cycle, in: Lymphocyte stimulation, pp. 357–378. North-Holland/Elsevier Publishing Company, New York 1975.

    Google Scholar 

  21. Gall, J. G., Porter, K. R., and Siekevitz, P., eds, Motility and stability mechanisms, in: Discovery in cell biology. J. Cell Biol.91 (1981) 107s–186s.

    Google Scholar 

  22. Allen, R. D., Motility, J. Cell Biol.91 (1981) 148s-155s.

    Article  CAS  PubMed  Google Scholar 

  23. Albrecht-Buehler, G., Daughter 3T3 cells. Are they mirror images of each other? J. Cell Biol.72 (1977) 595–603.

    Article  CAS  PubMed  Google Scholar 

  24. Folkman, J., and Moscona, A., Role of cell shape in growth control. Nature273 (1978) 345–349.

    Article  CAS  PubMed  Google Scholar 

  25. Ploem, J. S., Reflection-contrast microscopy as a tool for investigation of the attachment of living cells to a glass surface, in: Mononuclear phagocytes in immunity, infection and pathology, pp. 405–421. Ed. R. van Furth, Blackwell Scientific Publications, Melbourne and London 1975.

    Google Scholar 

  26. Morgan, M. J., and Faik, P., Carbohydrate metabolism in cultured animal cells. Biosci. Reps1 (1981) 669–686.

    Article  CAS  Google Scholar 

  27. Mc Keehan, W. L., Glycolysis, glutaminolysis and cell proliferation. Cell Biol. int. Reps6 (1982) 635–650.

    Article  CAS  Google Scholar 

  28. Tairbekov, M. G., and Parfyonov, G. P., Cellular aspects of gravitational biology. Physiologist24 (1981) S69-S72.

    Google Scholar 

  29. Tixador, R., Richoilley, G., Grechko, G., Nefedov, Y., and Planel, H., Multiplication deParamecium aurelia a bord du vaisseau spatial Saliout-6 (Expérience Cytos). C. r. Acad. Sci. ParisD287 (1978) 829–832.

    CAS  Google Scholar 

  30. Wolosewick, J. J., and Porter, K. R., Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J. Cell Biol.82 (1979) 114–139.

    Article  CAS  PubMed  Google Scholar 

  31. Pollard, E. C., Physical determinants of receptor mechanism, in: Gravity and the organism, pp. 25–34. Eds A. Gordon and M. J. Cohen. University of Chicago Press, Chicago 1971.

    Google Scholar 

  32. Wohlfarth-Bottermann, K. E., Differentiations of the ground cytoplasm and their significance for the generation of the motive force of amoeboid movement, in: Primitive motile systems in cell biology, pp. 79–109. Eds R. D. Allen and N. Kamiya. Academic Press, New York and London 1964.

    Chapter  Google Scholar 

  33. Schatz, A., and Teuchert, G., Effects of combined O-g simulation and hypergravity on eggs of the nematodeAscaris suum. Aerospace Medicine43 (1972) 614–619.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to thank P. Bislin for her excellent technical assistance, J.F. Conscience for providing us with FBU 3b cells and P. Pippia for SGS-3 cells and for their useful advice, K. Bienz and W. Briegleb for reviewing the manuscript and B. Huber for manufacturing the high-g centrifuge. This work was supported by the Swiss National Science Foundation, Berne, grant No. 3.034–0.81.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tschopp, A., Cogoli, A. Hypergravity promotes cell proliferation. Experientia 39, 1323–1329 (1983). https://doi.org/10.1007/BF01990088

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01990088

Keywords

Navigation