Skip to main content
Log in

Extrapolation procedures for zero shear viscosity with a falling sphere viscometer

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

Several theoretical and empirical extrapolation procedures for the determination of zero shear viscosity in a falling sphere viscometer are critically analysed. They are experimentally tested and it is concluded that the extrapolation procedure based onCaswells work appears to be the most appropriate.

Zusammenfassung

Es werden einige theoretische und empirische Extrapolationsmethoden zur Bestimmung der Anfangs-Scherviskosität in einem Kugelfallviskosimeter kritisch analysiert. Diese werden experimentell überprüft, und es wird hieraus geschlossen, daß die Extrapolationsmethode, die auf der Arbeit vonCaswell beruht, die geeignetste zu sein scheint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

sphere diameter, cm

d c :

container diameter, cm

F :

1/6πD 3(ϱ s −ϱ)g=drag force on sphere, dynes

F S :

6πη0R v = drag force fromStokes law, dynes

f W :

wall correction factor forNewtonian flow past a sphere

f B :

bottom correction factor forNewtonian flow past a sphere

f I :

inertial correction factor forNewtonian flow past a sphere

g :

gravitational acceleration, cm/sec2

Re :

2Rvt ϱ/η0 =Reynolds number

v t :

measured sphere velocity, cm/sec

v :

sphere velocity in an infinite medium, cm/sec

W :

correction factor byCaswell [eq. 4]

η0 :

zero shear viscosity, poise

η0 (N) :

corrected viscosity [Eqn. 2], poise

η s :

apparentStokes viscosity, poise

ϱ :

fluid density, gm/cm3

ϱ s :

sphere density, gm/cm3

τ m (N) :

maximum pseudo-Newtonian shear stress [eq. 2], dyne/cm2

λ i :

combination of material parameters

(i=1, 2, 3):

[eq. 4, 5, 6]

References

  1. Oseen, C. W., Ark. Mat. Astr. Fys.6, No. 29 (1910).

  2. Goldstein, S., Proc. Roy. Soc. (London),A123, 225 (1929).

    Google Scholar 

  3. Proudman, I. andJ. R. A. Pearson, J. Fluid Mech.2, 237 (1957).

    Google Scholar 

  4. Ladenburg, R., Ann. Phys., No. 4, 447 (1907).

    Google Scholar 

  5. Faxen, H., Ark. Mat. Astr. Fys.17, No. 27, 1 (1922–23).

    Google Scholar 

  6. Tanner, R. I., J. Fluid Mech.17, 161 (1963).

    Google Scholar 

  7. Happel, J. andH. Brenner, Low Reynolds Number Hydrodynamics (Englewood Cliffs, New Jersey (1965).

  8. Williams, M. C., Amer. Inst. Chem. Eng. J.11, 467 (1965).

    Google Scholar 

  9. Tanner, R. I., Chem. Eng. Sci.19, 349 (1964).

    Article  Google Scholar 

  10. Sato, T., I. Taniyama, andS. Shimokawa, Kagaku Kogaku30, 34 (1966).

    Google Scholar 

  11. Caswell, B., Chem. Eng. Sci.25, 1167 (1970).

    Article  Google Scholar 

  12. Turian, R. M., Amer. Inst. Chem. Eng. J.13, 999 (1967).

    Google Scholar 

  13. Caswell, B., Ph. D. thesis, Stanford University (1962).

  14. Giesekus, H. Rheol. Acta3, 58 (1963).

    Article  Google Scholar 

  15. Williams, M. C., Ph. D. thesis, Univ. Wisconsin (1964).

  16. Turian, R. M., Ph. D. thesis, Univ. Wisconsin (1964).

  17. Soylu, M., R. A. Mashelkar, andJ. Ulbrecht, paper to be published.

  18. Kelkar, J. V., R. A. Mashelkar, andJ. Ulbrecht, paper to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subbaraman, V., Mashelkar, R.A. & Ulbrecht, J. Extrapolation procedures for zero shear viscosity with a falling sphere viscometer. Rheol Acta 10, 429–433 (1971). https://doi.org/10.1007/BF01993722

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01993722

Keywords

Navigation