Skip to main content
Log in

Assessment of the inoculum potential of Polymyxa betae and beet necrotic yellow vein virus (BNYVV) in soil using the most probable number method

  • Published:
Netherlands Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Application of a bioassay on serial dilutions of rhizomania-infested soil provided adequate information on the level of infestation withPolymyxa betae and beet necrotic yellow vein virus (BNYVV).

Different combinations of dilution ratios ratios and numbers of replicates (N) that had the same average precision were compared. A most probable number (MPN) computer programme was written to enable the comparison, because MPN tables available in literature are limited to certain dilution ratios and values of N.

Most probable numbers of infective units per ml soil assessed for infested soil from the Noordoostpolder and from Tholen (the Netherlands) were 48 forP. betae with 7.1 for BNYVV and 16 forP. betae with 1.6 for BNYVV, respectively. So in these soils 10–15% of the infective population ofP. betae was viruliferous.

The inoculum potential of stored soil samples was not affected by conditions during storage for 28 months (dry and warm or wet and cool).

Samenvatting

Toepassing van de verdunningsmethode en de ‘MPN’-berekening op de biotoets voor rhizomanie resulteerde in kwantitatieve gegevens over de mate van besmetting van de grond, zowel voorP. betae als voor BNYVV.

De besmettingsgraad van bewaarde grondmonsters werd niet beïnvloed door de bewaaromstandigheden gedurende 28 maanden (droog en warm of vochtig en koud).

Mogelijkheden voor praktische toepassing van de methodiek worden besproken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, H. & Tamada, T., 1986. Association of beet necrotic yellow vein virus with isolates ofPolymyxa betae Keskin. Annals of the Phytopathological Society of Japan 52: 235–247.

    Google Scholar 

  • Anonymus, 1985. Estimation of bacterial density. In: Standard methods for the examination of water and waste water, 16th edition, American Public Health Association, Washington, p. 880–882.

  • Asher, M.J.C. & Blunt, S.J., 1987. The ecological requirements ofPolymyxa betae. Proceedings 50th Winter Congress IIRB, Brussels: 45–55.

  • Baker, R., 1965. The dynamics of inoculum. In: Baker, K.F. & Snyder, W.C. (Eds), Ecology of soil-borne pathogens. University of California Press, Los Angeles, p. 395–403.

    Google Scholar 

  • Beemster, A.B.R. & Heij, A. de, 1987. A method for detectingPolymyxa betae and beet necrotic yellow vein virus in soil using sugar-beet as a bait plant. Netherlands Journal of Plant Pathology 93: 91–93.

    Google Scholar 

  • Blunt, S.J. & Asher, M.J.C., 1989.Polymyxa: the rhizomania vector. British Sugar Beet Review 57: 31–33.

    Google Scholar 

  • Bouhot, D., 1979. Estimation of inoculum density and inoculum potential: techniques and their value for disease prediction. In: Schippers, B. & Gams, W. (Eds), Soil-borne plant pathogens. Academic Press, London etc., p. 21–34.

    Google Scholar 

  • Buchanan, R.E. & Fulmer, E.I., 1928. Physiology and biochemistry of bacteria. Volume 1: Growth phases; composition; and biophysical chemistry of bacteria and their environment; and energetics. Williams & Wilkins, Baltimore, 516 pp.

    Google Scholar 

  • Ciafardini, G. & Marotta, B., 1989. Use of the most-probable-number technique to detectPolymyxa betae (Plasmodiophoromycetes) in soil. Applied and Environmental Microbiology 55: 1273–1278.

    Google Scholar 

  • Clark, M.F. & Adams, A.N., 1977. characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology 34: 475–483.

    PubMed  Google Scholar 

  • Cochran, W.G., 1950. Estimation of bacterial densities by means of ‘the most probable number’. Biometrics 6: 105–116.

    PubMed  Google Scholar 

  • Duncan, J.M., 1976. The use of bait plants to detectPhytophthora fragariae in soil. Transactions of the British Mycological Society 66: 85–89.

    Google Scholar 

  • Fisher, R.A. & Yates, F., 1963. Statistical tables for biological, agricultural and medical research. 6th edition, Longman, London, 146 pp.

    Google Scholar 

  • Flegg, C.L. & Clark, M.F., 1979. The detection of apple chlorotic leafspot virus by a modified procedure of enzyme-linked immunosorbent assay (ELISA). Annals of applied Biology 91: 61–65.

    Google Scholar 

  • Fujisawa, I. & Sugimoto, T., 1976. Transmission of beet necrotic yellow vein virus byPolymyxa betae. Annals of the Phytopathological Society of Japan 43: 583–586.

    Google Scholar 

  • Gerik, J.S. & Duffus, J.E., 1988. Differences in vectoring ability and aggressiveness of isolates ofPolymyxa betae. Phytopathology 78: 1340–1343.

    Google Scholar 

  • Giunchedi, L., De Biaggi, M. & Poggi Pollini, C., 1987. Correlation between tolerance and beet necrotic yellow vein virus in sugar-beet genotypes (1). Phytopathologia mediterranea 26: 23–28.

    Google Scholar 

  • Giunchedi, L. & Langenberg, W.G., 1982. Beet necrotic yellow vein virus transmission byPolymyxa betae Keskin zoospores. Phytopathologia mediterranea 21: 5–7.

    Google Scholar 

  • Giunchedi, L. & Poggi Pollini, C., 1988. Immunogold-silver localization of beet necrotic yellow vein virus antigen in susceptible and moderately resistant sugar-beets. Phytopathologia mediterranea 27: 1–6.

    Google Scholar 

  • Goffart, J.P., Bol, V. van & Maraite, H., 1987. Quantification du potentiel d'inoculum dePolymyxa betae Keskin dans les sols. Proceedings 50th Winter Congress IIRB, Brussels: 295–306.

  • Halvorson, H.O. & Ziegler, N.R., 1933. Application of statistics to problems in bacteriology. I. A means of determining bacterial populations by the dilution method. Journal of Bacteriology 25: 101–121.

    Google Scholar 

  • Heijbroek, W., 1988. Dissemination of rhizomania by soil, beet seeds and stable manure. Netherlands Journal of Plant Pathology 94: 9–15.

    Google Scholar 

  • Hillmann, U. & Schlösser, E., 1986. Rizomania X. Translokation des Aderngelbfleckigkeitsvirus (BNYVV) inBeta spp. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 51: 827–834.

    Google Scholar 

  • Hofmeester, Y. & Tuitert, G., 1989. Development of rhizomania in an artificially infested field. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 54: 469–478.

    Google Scholar 

  • Hornby, D., 1969. Quantitative estimation of soil-borne inoculum of the take-all fungus (Ophiobolus graminis (Sacc.) Sacc.). Proceedings of the 5th British Insecticide and Fungicide Conference, Brighton: 65–70.

  • Keskin, B., 1964.Polymyxa betae n.sp., ein Parasit in den Wurzeln vonBeta vulgaris Tournefort, besonders während der Jugendentwicklung der Zuckerrübe. Archiv für Mikrobiologie 49: 348–374.

    Google Scholar 

  • Kleczkowski, A., 1968. Experimental design and statistical methods of assay. In: Maramorosch, K. & Koprowski, H. (Eds), Methods in virology IV, Academic Press, New York, p 615–730.

    Google Scholar 

  • Maloy, O.C. & Alexander, M., 1958. The ‘most probable number’ method for estimating populations of plant pathogenic organisms in the soil. Phytopathology 48: 126–128.

    Google Scholar 

  • Man, J.C. de, 1975. The probability of most probable numbers. European Journal of Applied Microbiology 1: 67–78.

    Google Scholar 

  • Merz, U. & Häni, A., 1985. Fangpflanzentest zur Bestimmung des Infektionspotentials von beet necrotic yellow vein virus undPolymyxa betae in Bodenproben. Proceedings 48th Winter Congress IIRB, Brussels: 421–430.

  • Mitchell, J.E., 1979. The dynamics of the inoculum potential of populations of soil-borne plant pathogens in the soil ecosystem. In: Schippers, B., & Gams, W., Soil-borne plant pathogens. Academic Press, London etc., p. 3–20.

    Google Scholar 

  • Parnow, R.J., 1972. Computer program estimates bacterial densities by means of the most probable numbers, Food Technology 26: 56–62.

    Google Scholar 

  • Pfender, W.F., Rouse, D.I. & Hagedorn, D.J., 1981. A ‘most probable number’ method for estimating inoculum density ofAphanomyces euteiches in naturally infested toil. Phytopathology 71: 1169–1172.

    Google Scholar 

  • Porter, W.M., 1979. The ‘most probable number’ method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil. Australian Journal of Soil Research 17: 515–519.

    Google Scholar 

  • Scott, J.M. & Porter, F.E., 1986. An analysis of the accuracy of a plant infection technique for counting rhizobia. Soil Biology and Biochemistry 18: 355–362.

    Google Scholar 

  • Sutula, C.L., Gillett, J.M., Morrissey, S.M. & Ramsdell, D.C., 1986. Interpreting ELISA data and establishing the positive- negative threshold. Plant Disease 70: 722–726.

    Google Scholar 

  • Tamada, T., 1975. Beet Necrotic Yellow Vein Virus. C.M.I./A.A.B. Description of plant viruses, no 144.

  • Vuurde, J.W.L. van & Maat, D.Z., 1985. Enzyme-linked immunosorbent assay (ELISA) and disperse-dye immuno assay (DIA): comparison of some aspects of simultaneous and separate incubation of sample and conjugate for the routine detection of lettuce mosaic and pea earlybrowning viruses in seeds. Netherlands Journal of Plant Pathology 91: 3–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuitert, G. Assessment of the inoculum potential of Polymyxa betae and beet necrotic yellow vein virus (BNYVV) in soil using the most probable number method. Netherlands Journal of Plant Pathology 96, 331–341 (1990). https://doi.org/10.1007/BF01998782

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01998782

Additional keywords

Navigation