Skip to main content
Log in

Sensitivity and stability analysis for nonlinear programming

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We give a brief overview of important results in several areas of sensitivity and stability analysis for nonlinear programming, focusing initially on “qualitative” characterizations (e.g., continuity, differentiability and convexity) of the optimal value function. Subsequent results concern “quantitative” measures, in particular optimal value and solution point parameter derivative calculations, algorithmic approximations, and bounds. Our treatment is far from exhaustive and concentrates on results that hold for smooth well-structured problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Aiyoshi, Stability theory for equality and inequality constrained optimization problems, Trans. Soc. Instr. Control Eng. 20(6) (1984) 564–566 (in Japanese).

    Google Scholar 

  2. J.-P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res. 9(1) (1984) 87–111.

    Google Scholar 

  3. R.L. Armacost and A.V. Fiacco, Sensitivity analysis for parametric nonlinear programming using penalty methods, in:Computers and Mathematical Programming, National Bureau of Standards Special Publication 502 (1978) pp. 261–269.

    Google Scholar 

  4. B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer,Nonlinear Parametric Optimization (Akademie-Verlag, Berlin, 1982).

    Google Scholar 

  5. C. Berge,Topological Spaces (trans. E.M. Patterson)(MacMillan, New York, 1963).

    Google Scholar 

  6. J.H. Bigelow and N.Z. Shapiro, Implicit function theorems for mathematical programming and for systems of inequalities, Math. Programming 6(2) (1974) 141–156.

    Google Scholar 

  7. E.V. Choo and K.P. Chew, Optimal value functions in parametric programming, Z. Oper. Res. 29 (1985) 47–57.

    Google Scholar 

  8. B. Cornet and G. Laroque, Lipschitz properties of solutions in mathematical programming, J. Optim. Theory Appl. 53(3) (1987) 407–427.

    Google Scholar 

  9. B. Cornet and J.-PH. Vial, Lipschitzian solutions of perturbed nonlinear programming problems, SIAM J. Control Optim. 24(6) (1986) 1123–1137.

    Google Scholar 

  10. J.W. Daniel, Stability of the solution of definite quadratic programs, Math. Programming 5(1) (1973) 41–53.

    Google Scholar 

  11. J.M. Danskin, The theory of max-min with applications, SIAM J. Appl. Math. 14(4) (1966) 641–664.

    Google Scholar 

  12. G.B. Dantzig, J. Folkman and N.Z. Shapiro, On the continuity of the minimum set of a continuous function, J. Math. Anal. Appl. 17(3) (1967) 519–548.

    Google Scholar 

  13. J.P. Evans and F.J. Gould, Stability in nonlinear programming, Oper. Res. 18(1) (1970) 107–118.

    Google Scholar 

  14. A.V. Fiacco, Convergence properties of local solutions of sequences of mathematical programming problems in general spaces, J. Optim. Theory Appl. 13(1) (1974) 1–12.

    Google Scholar 

  15. A.V. Fiacco, Sensitivity analysis for nonlinear programming using penalty methods, Math. Programming 10(3) (1976) 287–311.

    Google Scholar 

  16. A.V. Fiacco, Optimal value continuity and differential stability bounds under the Mangasarian-Fromovitz constraint qualification, in:Mathematical Programming with Data Perturbations, Vol. 2, A.V. Fiacco (ed.) (Marcel Dekker, New York, 1983) pp. 65–90.

    Google Scholar 

  17. A.V. Fiacco,Introduction to Sensitivity and Stability Analysis in Nonlinear Programming (Academic Press, New York, 1983).

    Google Scholar 

  18. A.V. Fiacco and A. Ghaemi, A user's manual for SENSUMT. A penalty function computer program for solution, sensitivity analysis and optimal value bound calculation in parametric nonlinear programs, Technical Paper T-434, Institute for Management Science and Engineering, George Washington Univ., Washington, DC (1980).

    Google Scholar 

  19. A.V. Fiacco and J. Kyparisis, Sensitivity analysis in nonlinear programming under second order assumptions, in:Systems and Optimization, A. Bagchi and H.Th. Jongen (eds.) (Springer, Berlin, 1985) pp. 74–97.

    Google Scholar 

  20. A.V. Fiacco and J. Kyparisis, Convexity and concavity properties of the optimal value function in parametric nonlinear programming, J. Optim. Theory Appl. 48 (1986) 95–126.

    Google Scholar 

  21. A.V. Fiacco and J. Kyparisis, A tutorial on parametric nonlinear programming sensitivity and stability analysis, in:Proc. Conf. in Honor of A. Charnes on his 70th Birthday, W.W. Cooper (ed.), Austin, Texas (October 14–16, 1987).

  22. A.V. Fiacco and J. Kyparisis, Computable bounds on parametric solutions of convex problems, Math. Programming 40 (1988) 213–221.

    Google Scholar 

  23. A.V. Fiacco and G.P. McCormick,Nonlinear Programming, Sequential Unconstrained Minimization Techniques (Wiley, New York, 1968). An unabridged corrected re-publication was published by SIAM in the seriesClassics in Applied Mathematics (1990).

    Google Scholar 

  24. V.A. Gaitsgory and A.A. Pervozvanski, Perturbation theory for mathematical programming problems, J. Optim. Theory Appl. 49(3) (1986) 389–410.

    Google Scholar 

  25. J. Gauvin and R. Janin, Directional derivative of the value function in parametric optimization, this volume.

  26. J. Gauvin and F. Dubeau, Differential properties of the marginal function in mathematical programming, Math. Programming Study 19 (1982) 101–119.

    Google Scholar 

  27. H.J. Greenberg and W.P. Pierskalla, Extensions of the Evans-Gould stability theorems for mathematical programs, Oper. Res. 20(1) (1972) 143–153.

    Google Scholar 

  28. W.W. Hager, Lipschitz continuity for constrained processes, SIAM J. Control Optimiz. 17(3) (1979) 321–338.

    Google Scholar 

  29. W.W. Hogan, The continuity of the perturbation function of a convex program, Oper. Res. 21(1) (1973) 351–352.

    Google Scholar 

  30. W.W. Hogan, Point-to-set maps in mathematical programming, SIAM Rev. 15(3) (1973) 591–603.

    Google Scholar 

  31. W.W. Hogan, Directional derivatives for extremal value functions with applications to the completely convex case, Oper. Res. 21 (1973) 188–209.

    Google Scholar 

  32. K. Jittorntrum,Sequential algorithms in nonlinear programming, Ph.D. Dissertation, Australian National University, Canberra (1978).

    Google Scholar 

  33. K. Jittorntrum, Solution point differentiability without strict complementarity in nonlinear programming, Math. Programming Study 21 (1984).

  34. D. Klatte, A sufficient condition for lower semicontinuity of solution sets of systems of convex inequalities, Math. Programming Study 21 (1984) 139–149.

    Google Scholar 

  35. M. Kojima, Strongly stable stationary solutions in nonlinear programs, in:Analysis and Computation of Fixed Points, S.M. Robinson (ed.) (Academic Press, New York, 1980) pp. 93–138.

    Google Scholar 

  36. B. Kummer, Generalized equations: solvability and regularity, Math. Programming Study 21 (1984) 199–212.

    Google Scholar 

  37. J. Kyparisis, On uniqueness of Kuhn-Tucker multipliers in nonlinear programming, Math. Programming 32 (1985) 242–246.

    Google Scholar 

  38. J. Kyparisis and A.V. Fiacco, Generalized convexity and concavity of the optimal value function in nonlinear programming, Math. Programming 39 (1987) 285–304.

    Google Scholar 

  39. O.L. Mangasarian,Nonlinear Programming (McGraw-Hill, New York, 1969).

    Google Scholar 

  40. O.L. Mangasarian and R. de Leone, Error bounds for strongly convex programs and (super) linearly convergent iterative schemes for the least 2-norm solution of a linear program, Appl. Math. Optimiz.17 (1988) 1–14.

    Google Scholar 

  41. O.L. Mangasarian and T.-H. Shiau, Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems, SIAM J. Control Optimiz.25(3) (1987) 583–595.

    Google Scholar 

  42. S.M. Robinson, Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear programming algorithms, Math. Programming 7(1) (1974) 1–16.

    Google Scholar 

  43. S.M. Robinson, Stability theory for systems of inequalities, Part I: Linear systems, SIAM J. Num. Anal. 12 (1975) 754–769.

    Google Scholar 

  44. S.M. Robinson, Stability theory for systems of inequalities, Part II: Differentiable nonlinear systems, SIAM J. Num. Anal. 13 (1976) 497–513.

    Google Scholar 

  45. S.M. Robinson, Generalized equations and their solutions, Part I: Basic theory, Math. Programming Study 10 (1979) 128–141.

    Google Scholar 

  46. S.M. Robinson, Strongly regular generalized equations, Math. Oper. Res. 5(1) (1980) 43–62.

    Google Scholar 

  47. S.M. Robinson, Generalized equations and their solutions, Part II: Applications to nonlinear programming, MRC Technical Summary Report #2048, Mathematics Research Center, University of Wisconsin, Madison, Wis. (1980).

    Google Scholar 

  48. S.M. Robinson, Some continuity properties of polyhedral multifunctions, Math. Programming Study 14 (1981) 206–214.

    Google Scholar 

  49. S.M. Robinson, Local epi-continuity and local optimization, Math. Programming37 (1987) 208–222.

    Google Scholar 

  50. S.M. Robinson and R. Day, A sufficient condition for continuity of optimal sets in mathematical programming, J. Math. Anal. Appl. 45(1) (1974) 506–511.

    Google Scholar 

  51. R.T. Rockafellar, Directional differentiability of the optimal value function in a nonlinear programming problem, Math. Programming Study21 (1984).

  52. R. Schultz, Estimates for Kuhn-Tucker points of perturbed convex programs, Optimization19 (1988) 29–43.

    Google Scholar 

  53. A. Shapiro, Second order sensitivity analysis and asymptotic theory of parameterized nonlinear programs, Math. Programming33 (1985) 280–299.

    Google Scholar 

  54. A. Shapiro, Sensitivity analysis of nonlinear programs and differentiability properties of metric projections, SIAM J. Control Optim.26(3) (1988) 628–645.

    Google Scholar 

  55. A. Shapiro, Perturbation theory of nonlinear programs when the set of optimal solutions is not a singleton, Appl. Math. Optim.18 (1988) 215–229.

    Google Scholar 

  56. J.E. Spingarn, Fixed and variable constraints in sensitivity analysis, SIAM J. Control Optim. 18(3) (1980) 297–310.

    Google Scholar 

  57. M.H. Stern and D.M. Topkis, Rates of stability in nonlinear programming, Oper. Res. 24(3) (1976) 462–476.

    Google Scholar 

  58. S. Zlobec, R. Gardner and A. Ben-Israel, Regions of stability for arbitrarily perturbed convex programs, in:Mathematical Programming with Data Perturbations, A.V. Fiacco (ed.),Lecture Notes in Pure and Applied Mathematics, Vol. 73 (Marcel Dekker, New York, 1982) pp. 69–89.

    Google Scholar 

  59. T. Zolezzi, On stability analysis in mathematical programming, Math. Programming Study, 21 (1984) 227–242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by National Science Foundation Grant ECS-86-19859 and Grant N00014-89-J-1537 Office of Naval Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiacco, A.V., Ishizuka, Y. Sensitivity and stability analysis for nonlinear programming. Ann Oper Res 27, 215–235 (1990). https://doi.org/10.1007/BF02055196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02055196

Keywords

Navigation