Skip to main content
Log in

Optical detection using photodiodes

  • Detectors
  • Published:
Opto-electronics Aims and scope Submit manuscript

Abstract

Linear photodiode-amplifier combinations will be required for optical communication systems, in particular for those using fibre optics as the transmission medium. The noise performance of photodiode-amplifier combinations is derived and presented, and some parameters affecting photodiode and first stage amplifier design are reviewed. It is shown that, of foreseen devices, silicon JFETs will be quietest as amplifier first stages for base bandwidths of up to 10 MHz, GaAs FETs up to 100 MHz and bipolar transistors will be preferred for broader bandwidths. In tuned applications the JFET is to be preferred up to 8 MHz and GaAs FETs will be the best devices above that frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

System bandwidth Hz

C :

(C c +C j +C p +C iS) F

C c :

Case capacity of amplifying device F

C is :

Input capacity for FET, zero for bipolar F

C j :

Junction capacity of photodetector F

C p :

Package capacity of photodiode F

C T :

Capacity of inductor or transformer at diode connection F

e :

rms equivalent short circuit input noise voltage of general amplifier V Hz−1/2

e n :

e for FET V Hz−1/2

f :

Electrical frequency Hz

f n :

Turnover frequency for 1/f noise Hz

f(t) :

Phase difference between light signal and heterodyne signal rad

f α :

Cut off frequency of transistor Hz

g fs :

Forward transconductance of FET S

ggs :

Input conductance of FET S

h :

Planck's constant J s

I b :

Base current of bipolar transistor A

I e :

Emitter current of bipolar transistor A

I g :

Gate current of FET A

I0 :

Leakage current of photodiode A

I p :

Photon generated current in diode A

i :

rms equivalent noise current at input of amplifier A Hz−1/2

i g :

rms noise current at FET gate A Hz−1/2

i n :

rms equivalent noise current at junction of photodiode at unity gain in the absence of light A Hz−1/2

i p :

rms noise current associated withI p A Hz−1/2

i M :

rms noise current due to junction current at gainM A Hz−1/2

k :

Boltzmann's constant J K−1

M :

Avalanche gain

M:

Derived figure of merit for amplifying device s−1

n :

Turns ratio for transformer

N(S):

Equivalent rms noise at signal level S same as ‘S’

P h :

Heterodyne oscillator power incident on photodiode W

P l :

Light signal power incident on photodiode W

q :

Electronic charge C

r b :

Base series resistance of bipolar transistor Ω

R s :

Series resistance of photodiode Ω

S :

Signal level at arbitrary point in system Indeterminate

T :

Ambient temperature or temperature of bipolar junction K

T c :

Apparent channel temperature of FET K

α :

Small signal current gain of bipolar transistor

α 0 :

Small signal current gain of bipolar transistor at d.c.

η :

Quantum efficiency of photodiode

ϰ :

Ionization ratio

ν :

Optical frequency of light radiation Hz

ν h :

Optical frequency of heterodyne signal Hz

π(S):

Probability density function forS

ω :

Angular frequency of electrical signal s−1

ω α :

Cut off angular frequency for bipolar transistor s−1

References

  1. B. M. Oliver,Proc. IEEE 53 (1965) 436–454.

    Google Scholar 

  2. W. T. Lynch,IEEE Trans. Electron Dev. ED15 (1968) 735–741.

    Google Scholar 

  3. Hewlett Packard data sheet 5082-4205.

  4. A. Van Der Ziel,Proc. IEEE 58 (1970) 1178–1206.

    Google Scholar 

  5. R. J. Mcintyre,IEEE Trans. Electron Dev. ED 13 (1966) 164–168.

    Google Scholar 

  6. S. D. Personick,Bell Syst. Tech. J. 50 (1971) 3075–3095.

    Google Scholar 

  7. S. M. Sze, ‘Physics of Semiconductor devices’, Wiley Interscience, New York, 1969.

    Google Scholar 

  8. W. T. Lindley, R. J. Phelan Jun, C. M. Wolfe, andA. G. Foyt,Applied Phys. Lett. 14 (1969) 197–199.

    Google Scholar 

  9. R. J. Locker andG. C. Huth,ibid 9 (1966) 227–230.

    Google Scholar 

  10. D. A. Kahn, Plessey Report ERL/N 241/U October 1970.

  11. A. Van Der Ziel andJ. Ero,IEEE Trans. Electron Dev. ED 11 (1964) 128–135.

    Google Scholar 

  12. D. A. Kahn, Plessey Report ERL/N 242/U October 1970.

  13. R. L. Pritchard,IRE Trans Circuit Theory 3 (1956) 5–21.

    Google Scholar 

  14. R. B. Emmons,J. Appl. Phys. 38 (1967) 3705–3714.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rokos, G.H.S. Optical detection using photodiodes. Opto-electronics 5, 351–366 (1973). https://doi.org/10.1007/BF02057134

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02057134

Keywords

Navigation