Skip to main content
Log in

Induction and repression of arginase and ornithine transaminase in baker's yeast

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The arginase and the ornithine transaminase of baker's yeast are induced byl-arginine. Both enzymes have been shown to be repressed by nitrogen compounds. This is evidenced primarily by the decrease in specific enzyme activities caused by the addition of readily assimilable nitrogen compounds to a yeast culture with arginine, secondly by the derepression of both enzymes during nitrogen starvation of the yeast grown in various arginine-free media. This derepression equals both in rate and in amount the enzyme synthesis during the adaptation of the yeast to a medium withl-arginine as the sole nitrogen source. It is inhibited by various assimilable and non-assimilable amino acids. The derepression is the result of the nitrogen deficiency itself, since during the starvation of the yeast for sulphate, phosphate or magnesium, neither of the two enzymes is derepressed, and since it is independent of the nature of the carbon source in the nitrogen starvation medium, provided the latter is immediately assimilable.

The enzymes are not subject to catabolite repression by glucose metabolites.

It is concluded that the synthesis of arginase and ornithine transaminase in yeast is regulated by induction and repression. Arginine induces the enzymes; they are repressed by nitrogen compounds, probably in cooperation with one or more vitamins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archibald, R. M. 1945. Colorimetric determination of urea. - J. Biol. Chem.157: 507–518.

    Google Scholar 

  • Bechet, J. andWiame, J. M. 1964.In G. E. W. Wolstenholme and M. P. Cameron, [eds.], Comparative biochemistry of arginine and derivatives, Churchill, London, p. 16.

    Google Scholar 

  • DeMoss, R. D. andBard, R. C. 1957. Physiological and biochemical technics, p. 169–198.In Society of American Bacteriologists, [eds.], Manual of microbiological methods, McGraw-Hill, New York.

    Google Scholar 

  • DeTurck, W. E. 1955. The adaptive formation of urease by washed suspensions ofPseudomonas aeruginosa. - J. Bacteriol.70: 187–191.

    Google Scholar 

  • Dische, Z. 1930. Über einige neue charakteristische Farbreaktionen der Thymonukleïnsäure und eine Mikromethode zur Bestimmung derselben in tierischen Organen mit Hilfe dieser Reaktionen. - Mikrochemie8: 4–32.

    Google Scholar 

  • Eliasson, E. E. 1965. Regulation of arginase activity in Chang's liver cells in tissue culture. - Biochim. Biophys. Acta97: 449–459.

    Google Scholar 

  • Eliasson, E. E. 1967. Regulation of arginase activity in Chang liver cells in the absence of net protein synthesis. - Biochem. Biophys. Res. Commun.27: 661–667.

    Google Scholar 

  • Eliasson, E. E. andStrecker, H. J. 1966. Arginase activity during the growth cycle of Chang's liver cells. - J. Biol. Chem.241: 5757–5763.

    Google Scholar 

  • Ephrussi, B., Slonimsky, P. P., Yotsuyanagi, Y. etTavlitzki, J. 1956. Variations physiologiques et cytologiques de la levure au cours du cycle de la croissance aérobie. - Compt. Rend. Trav. Lab. Carlsberg, Sér. Physiol.26: 87–102.

    Google Scholar 

  • Ferguson, J. J., Jr.,Boll, M. andHolzer, H. 1967. Yeast malate dehydrogenase: enzyme inactivation in catabolite repression. - Europ. J. Biochem.1: 21–25.

    Google Scholar 

  • Hierholzer, G. undHolzer, H. 1963. Repression der Synthese von DPN-abhängiger Glutaminsäuredehydrogenase inSaccharomyces cerevisiae durch Ammoniumionen. - Biochem. Z.339: 175–185.

    Google Scholar 

  • Johnson, M. J. 1941. Isolation and properties of a pure yeast polypeptidase. - J. Biol. Chem.137: 575–586.

    Google Scholar 

  • König, C., Kaltwasser, H. undSchlegel, H. G. 1967. Die Bildung von Urease nach Verbrauch der Aüszeren N-Quelle beiHydrogenomonas H 16. - Arch. Mikrobiol.53: 231–241.

    Google Scholar 

  • Laishley, E. J. andBernlohr, R. W. 1966. Catabolite repression of “three sporulating enzymes” during growth ofBacillus licheniformis. - Biochem. Biophys. Res. Commun.24: 85–90.

    Google Scholar 

  • Magasanik, B. 1961. Catabolite repression. - Cold Spring Harbor Symp. Quant. Biol.26: 249–256.

    Google Scholar 

  • Middelhoven, W. J. 1964. The pathway of arginine breakdown inSaccharomyces cerevisiae. - Biochim. Biophys. Acta93: 650–652.

    Google Scholar 

  • Middelhoven, W. J. 1965. The ferrous ion as cofactor of yeast arginasein vivo. - Abstr. Second Meeting Federation of European Biochemical Societies, Vienna, p. 204.

  • Middelhoven, W. J. 1967. Induction and repression of arginase and of ornithine transaminase in baker's yeast. - Biochem. J.106: 32 P.

    Google Scholar 

  • Middelhoven, W. J. 1968. The derepression of arginase and of ornithine transaminase in nitrogen-starved baker's yeast. - Biochim. Biophys. Acta156: 440–443.

    Google Scholar 

  • Middelhoven, W. J. 1969a. Enzyme repression in the arginine pathway ofSaccharomyces cerevisiae. - Antonie van Leeuwenhoek35: 215–226.

    Google Scholar 

  • Middelhoven, W. J. 1969b. The ferrous ion as the cofactor of arginasein vivo. I. Properties of yeast arginase metallo-complexes of known composition and of native arginase. - Biochim. Biophys. Acta191: 110–121.

    Google Scholar 

  • Middelhoven, W. J. 1969c. The effect ofmyo-inositol on the synthesis of arginase and ornithine transaminase in baker's yeast. - Biochim. Biophys. Acta192: 243–251.

    Google Scholar 

  • Middelhoven, W. J., de Waard, M. A. andMulder, E. G. 1969. The ferrous ion as the cofactor of arginasein vivo. II. Experiments on the replacement of ferrous ions in native yeast arginase by other cationsin vivo. - Biochim. Biophys. Acta191: 122–129.

    Google Scholar 

  • Moore, S. andStein, W. H. 1948. Photometric ninhydrin method for use in the chromatography of amino acids. - J. Biol. Chem.176: 367–388.

    Google Scholar 

  • Mulder, E. G., Deinema, M. H., van Veen, W. L. andZevenhuizen, L. P. T. M. 1962. Polysaccharides, lipids and poly-β-hydroxybutyrate in microorganisms. - Rec. Trav. Chim.81: 797–809.

    Google Scholar 

  • Polakis, E. S. andBartley, W. 1965. Changes in the enzyme activities ofSaccharomyces cerevisiae during aerobic growth on different carbon sources. - Biochem. J.97: 284–297.

    Google Scholar 

  • Ramaley, R. F. andBernlohr, R. W. 1965. Postlogarithmic phase metabolism of sporulating microorganisms. II. The occurrence and partial purification of an arginase. - J. Biol. Chem.241: 620–623.

    Google Scholar 

  • Ramaley, R. F. andBernlohr, R. W. 1966. Postlogarithmic phase metabolism of sporulating microorganisms. III. Breakdown of arginine to glutamic acid. - Arch. Biochem. Biophys.117: 34–43.

    Google Scholar 

  • Schneider, W. C. 1945. Phosphorus compounds in animal tissues. I. Extraction and estimation of desoxypentose nucleic acid and of pentose nucleic acid. - J. Biol. Chem.161: 293–303.

    Google Scholar 

  • Siegel, M. R. andSisler, H. D. 1964. Site of action of cycloheximide in cells ofSaccharomyces pastorianus. I. Effect of the antibiotic on cellular metabolism. II. The nature of inhibition of protein synthesis in a cell-free system. - Biochim. Biophys. Acta87: 70–82 and 83–89.

    Google Scholar 

  • Trevelyan, W. E. andHarrison, J. S. 1952. Studies on yeast metabolism. I. Fractionation and microdetermination of cell carbohydrates. - Biochem. J.50: 298–303.

    Google Scholar 

  • Tustanoff, E. R. andBartley, W. 1964. Development of respiration in yeast grown anaerobically on different carbon sources. - Biochem. J.91: 595–600.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Thanks are due to Professor E. G. Mulder for his frequent encouragement, to the Heineken's Brouwerij, Rotterdam and to the Landbouwhogeschoolfonds for research grants, and to Miss H. P. M. Klinkers, to Mr. P. J. Buysman and to Mr. G. J. K. Pesch for their skilful technical assistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middelhoven, W.J. Induction and repression of arginase and ornithine transaminase in baker's yeast. Antonie van Leeuwenhoek 36, 1–19 (1970). https://doi.org/10.1007/BF02069003

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02069003

Keywords

Navigation