Skip to main content
Log in

Functional expansions for nonlinear discrete-time systems

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

Given an input-output map associated with a nonlinear discrete-time state equationx(t + 1) =f(x(t);u(t)) and a nonlinear outputy(t) =h(x(t)), we present a method for obtaining a “discrete Volterra series” representation of the outputy(t) in terms of the controlsu(0), ...,u(t − 1). The proof is based on Taylor-type expansions of the iterated composition of analytic functions. It allows us to make an explicit construction of each kernel, that is, each coefficient of the series expansion ofy(t) in powers of the controls. This is achieved by making use of successive directional derivatives associated with a family of vector fields which are deduced from the discrete state equations. We discuss the use of these vector fields for the analysis and control of nonlinear discrete-time systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D'Alessandro, P., A. Isidori, and A. Ruberti, Realization and structure theory of bilinear dynamical systems,SIAM Journal on Control,12, 517–535, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  2. Fliess, M., Un codage non commutatif pour certains systèmes échantillonnés non linéaires,Information and Control,38, 264–287, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  3. Isidori, A., Direct construction of minimal bilinear realization from nonlinear input-output maps,IEEE Transactions on Automatic Control,18, 626–631, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  4. Sandberg, I. W., Expansions for discrete-time nonlinear systems,Circuits, Systems, and Signal Processing,2, 179–192, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  5. Fliess, M., Generating series for discrete-time nonlinear systems,IEEE Transactions on Automatic Control,25, 985, 1980.

    Article  Google Scholar 

  6. Sontag, E. D.,Polynomial Response Maps, Lecture Notes in Control Information Sciences, vol. 13, Springer-Verlag, Berlin, 1979.

    Google Scholar 

  7. Normand-Cyrot, D., Théorie et pratique des systèmes non linéaires en temps discret, Thèse de Doctorat d'Etat, Paris-Sud, Orsay, 1983.

    Google Scholar 

  8. Lesiak, C. and A. J. Krener, The existence and uniqueness of Volterra series for nonlinear systems,IEEE Transactions on Automatic Control,23, 1090–1095, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  9. Isidori, A.,Nonlinear Control Systems: An Introduction, Lecture Notes in Information and Control, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  10. Fliess, M., Fonctionnelles causales non linéaires et indéterminées non commutatives,Bulletin Société Mathématique de France,109, 3–40, 1981.

    MathSciNet  MATH  Google Scholar 

  11. Spivak, M.,A Comprehensive Introduction to Differential Geometry, vol. 1, Publish or Perish Press, Berkeley, CA, 1979.

    Google Scholar 

  12. Magnus, W., On the exponential solution of differential equations for a linear operator,Communications on Pure and Applied Mathematics,VII, 649–673, 1954.

    Article  MathSciNet  Google Scholar 

  13. Ree, R., Lie elements and algebra associated with shuffles,Annals of Mathematics,68, 210–220, 1958.

    Article  MathSciNet  Google Scholar 

  14. Monaco, S. and D. Normand-Cyrot, The immersion under feedback of a multi-dimensional discrete-time nonlinear system into a linear system,International Journal on Control,38, 245–261, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  15. Monaco, S. and D. Normand-Cyrot, On the realization of nonlinear discrete-time systems,Systems and Control Letters,V, 145–152, 1984.

    Article  MathSciNet  Google Scholar 

  16. Monaco, S. and D. Normand-Cyrot, Input-output approximation of nonlinear discrete-time system from an equilibrium point,Proceedings of the 23rd IEEE Control Decision Conference, Las Vegas, NV, 1984.

  17. Monaco, S. and D. Normand-Cyrot, Invariant distributions for nonlinear discrete-time systems,Systems and Control Letters,V, 191–196, 1984.

    Article  MathSciNet  Google Scholar 

  18. Monaco, S. and D. Normand-Cyrot, A note on the discretization of a linear analytic control system, Report 06/84, D.I.S. Université de Rome “La Sapienza,” 1984. Also inProceedings of the 24th IEEE Control Decision Conference, Fort Lauderdale, 1985.

  19. Jakubczyk, B. and D. Normand-Cyrot, Orbites de pseudo groupes de difféomorphismes et commandabilité des systèmes non linéaires en temps discret,Computes-Rendus Académie Sciences, Paris,298, 257–260, 1984.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was carried out while D. Normand-Cyrot was working at the I.A.S.I. (from March to October 1984) and with the financial support of the Italian C.N.R. (Consiglio Nazionale delle Ricerche).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monaco, S., Normand-Cyrot, D. Functional expansions for nonlinear discrete-time systems. Math. Systems Theory 21, 235–254 (1988). https://doi.org/10.1007/BF02088015

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088015

Keywords

Navigation