Skip to main content
Log in

Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We generalize the usual Lax equationd/dt L=[M, L] byd/dt L=−ϱ(M)L, where ϱ is an arbitrary representation of a Lie algebra g (the values ofM) in a representation spaceV (the values ofL). The usual classicalr-matrix programme for Hamiltonian integrable systems is generalized tor-matrices taking values in g⊗V. Ther-matrices are then considered as left invariant torsion-free covariant derivatives on a Lie groupK (with Lie algebraV *). The Classical Yang-Baxter Equation (CYBE) is equivalent to the flatness ofK whereas the Modified CYBE implies thatK is an affine locally symmetric space. An example is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sklyanin, E.K.: On complete integrability of the Landau-Lifschitz equation. Preprint LOMI, E-3-79, Leningrad, LOMI (1980).

    Google Scholar 

  2. Sklyanin, E.K.: The quantum inverse scattering method. Zap. Nauch. Sem. LOMI95, 55–128 (1980)

    Google Scholar 

  3. Belavin, A.A., Drinfel'd, V.G.: Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. Appl.16, 159–180 (1982),17, 220–221 (1983)

    Article  Google Scholar 

  4. Drinfel'd, V.G.: Hamiltonian structures on Lie groups, Lie bialgebras, and the geometrical meaning of the Yang-Baxter equations. Soviet Math. Dokl.27, 68–71 (1983)

    Google Scholar 

  5. Semenov-Tyan-Shanskii, M.A.: What is a classicalr-matrix? Funct. Anal. Appl.17, 259–272 (1983)

    Article  Google Scholar 

  6. Kosmann-Schwarzbach, Y., Magri, F.: Poisson Lie groups and complete integrability. I. Drinfel'd bigebras, dual extensions and their canonical representations. Ann. Inst. Henri Poincaré49, 433–460 (1988)

    Google Scholar 

  7. Babelon, O., Viallet, C.-M.: Integrable models, Yang-Baxter equation, and quantum groups. Part I. Ref. S.I.S.S.A.54 EP (May 89) (preprint Trieste)

  8. Babelon, O., Viallet, C.-M.: Hamiltonian structures and Lax equations. Phys. Lett. B237, 411–416 (22 March 1990)

    Article  Google Scholar 

  9. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math.21, 467–490 (1968)

    Google Scholar 

  10. Semenov-Tyan-Shanskii, M.A.: Classicalr-matrices and the method of orbits. Zap. Nauch. Sem. LOMI123, 77–91 (1983)

    Google Scholar 

  11. Fomenko, A.T., Trofimov, V.V.: Integrable systems on Lie algebras and symmetric spaces. New York: Gordon and Breach 1988

    Google Scholar 

  12. Ferreira, L.A.: Integrability and symmetric spaces. I. The group manifold. II. the coset spaces. Int. J. Mod. Phys. A4, 649–674 (1989), (part I) and 675–699 (part II)

    Article  Google Scholar 

  13. Abraham, R., Marsden, J.E.: Foundations of mechanics 2nd (ed.) Princeton, NJ: Benjamin/Cummings 1978

    Google Scholar 

  14. Fomenko, A.T., Mishchenko, A.S.: Generalized Liouville method of integration of Hamiltonian systems. Funct. Anal. Appl.12, 113–121 (1978)

    Article  Google Scholar 

  15. Kobayashi, S., Nomizu, K.: Foundations of differential geometry. New York: Wiley, Vol. I (1963) and Vol. II (1969).

    Google Scholar 

  16. Medina Perea, A.: Flat left invariant connections adapted to the automorphism structure of a Lie group. J. Diff. Geom.16, 445–474 (1981)

    Google Scholar 

  17. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. New York: Academic Press 1978

    Google Scholar 

  18. Fomenko, A.T., Mishchenko, A.S.: Euler equations on finite-dimensional Lie groups. Math. USSR Izv.12, 371–389 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. Ya. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordemann, M. Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups. Commun.Math. Phys. 135, 201–216 (1990). https://doi.org/10.1007/BF02097662

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097662

Keywords

Navigation