Skip to main content
Log in

On a model for quantum friction, II. Fermi's golden rule and dynamics at positive temperature

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the dynamics of anN-level system linearly coupled to a field of mass-less bosons at positive temperature. Using complex deformation techniques, we develop time-dependent perturbation theory and study spectral properties of the total Hamiltonian. We also calculate the lifetime of resonances to second order in the coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • [A1] Arai, A.: On a model of harmonic oscillator coupled to a quantized, mass-less, scalar field, I. J. Math. Phys.22, 2539 (1981)

    Article  Google Scholar 

  • [A2] Arai, A.: On a model of harmonic oscillator coupled to a quantized, mass-less, scalar field, II. J. Math. Phys.22, 2549 (1981)

    Article  Google Scholar 

  • [AC] Aguilar, J., Combes, J.M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys.22, 269 (1971)

    Article  Google Scholar 

  • [AH] Avron, J.E., Herbst, I.: Spectral and scattering theory of Schrödinger operators related to the Stark effect. Commun. Math. Phys.52, 239 (1977)

    Article  Google Scholar 

  • [AW] Araki, H., Woods, E.J.: Representation of the canonical commutation relations descrbing a nonrelativistic infinite free Bose gas. J. Math. Phys.4, 637 (1963)

    Article  Google Scholar 

  • [BC] Balslev, E., Combes, J.M.: Spectral properties of many-body Schrödinger operators with dilation analytic interactions. Commun. Math. Phys.22, 280 (1971)

    Article  Google Scholar 

  • [BE] Bethe, H.A.: The electromagnetic shift of energy levels. Phys. Rev.72, 339 (1947)

    Google Scholar 

  • [BR] Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics II. Berlin, Heidelberg, New York: Springer, 1981

    Google Scholar 

  • [BFS] Bach, V., Fröhlich, J. Sigal, I.M.: In preparation

  • [BSZ] Baez, J.C., Segal, I.E., Zhou, Z.: Introduction to Algebraic and Constructive Quantum Field Theory. Princeton NJ: Princeton University Press, 1991

    Google Scholar 

  • [C] Cannon, J.T.: Infinite volume limits of the canonical free Bose gas states on the Weyl algebra. Commun. Math. Phys.29, 89 (1973)

    Google Scholar 

  • [D1] Davies, E.B.: Quantum Theory of Open Systems. London Academic Press, 1976

    Google Scholar 

  • [D2] Davies, E.B.: Markovian master equations. Commun. Math. Phys.39, 91 (1974)

    Article  Google Scholar 

  • [D3] Davies, E.B.: Markovian master equations, II. Math. Ann.219, 147 (1976)

    Article  Google Scholar 

  • [DI] Dirac, P.A.M.: The quantum theory of the emission and absorption of radiation. Proc. Royal Soc. London, SeriesA114, 243 (1927)

    Google Scholar 

  • [GJ] Glimm, J., Jaffe, A.: Quantum field theory models. In: Statistical Mechanics and Quantum Field Theory, (C. DeWitt and R. Stora). New York, London, Paris: Gordon and Breach, 1970

    Google Scholar 

  • [H] Haag, R.: Local Quantum Physics. Berlin, Heidelberg, New York: Springer 1993

    Google Scholar 

  • [HA] Haake, F.: Statistical Treatment of Open Systems by Generalized Master Equations. Heidelberg, New York: Springer Tracts in Modern Physics66, Berlin, Heidelberg, New York: Springer, 1973

    Google Scholar 

  • [HE] Herbst, I.: Exponential decay in Stark effect. Commun. Math. Phys.75, 197 (1980)

    Article  Google Scholar 

  • [HEI] Heitler, W.: The Quantum Theory of Radiation. London: Oxford University Press, 1954

    Google Scholar 

  • [HP] Hunziker, W., Pillet, C.-A.: Degenerate asymptotic perturbation theory. Commun. Math. Phys.90, 219 (1983)

    Article  Google Scholar 

  • [HS] Hübner, M., Spohn, H.: Radiative decay: Non-perturbative approaches. Preprint

  • [JP] Jakšić, V., Pillet, C.-A.: On a model for quantum friction I. Resonances and dynamics at zero-temperature. (To appear). Anal. Inst. H. Poincaré

  • [JP1] Jakšić, V., Pillet, C.-A.: On a model for quantum friction III. Ergodic properties of the Spin-Boson system. To appear in Commun. Math. Phys.

  • [JP2] Jakšić, V., Pillet, C.-A.: On a model for quantum friction IV. Return to equilibrium. In preparation

  • [JS] Jakšić, V., Segert, J.: Exponential approach to the adiabatic limit and Landau-Zener formula. Rev. Math. Phys.4, 529 (1992)

    Article  Google Scholar 

  • [K] Kato, T.: Perturbation Theory for Linear Operators. Berlin, Heidelberg, New York: Springer, 1966

    Google Scholar 

  • [LP] Lewis, J.T., Pule, J.V.: The equilibrium state of the free boson gas. Commun. Math. Phys.36, 1 (1974)

    Article  Google Scholar 

  • [M] Messiah, A.: Quantum Mechanics, Vol I and II. Amsterdam: North Holland, 1961

    Google Scholar 

  • [OY] Okamoto, T., Yajima, K.: Complex scaling technique in non-relativistic massive QED. Ann. Inst. H. Poincaré42, 31 (1985)

    Google Scholar 

  • [PR] Prigogine, I.: The statistical interpretation of non-equilibrium entropy. In: The Boltzmann Equation, Theory, and Applications, E.G.D. Cohen and W. Thirring. Berlin, Heidelberg, New York: Springer, 1973

    Google Scholar 

  • [PU] Pulé, J.V.: The Bloch equations. Commun. Math. Phys.38, 241 (1974)

    Article  Google Scholar 

  • [RS1] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, I. Functional Analysis. London: Academic Press, 1980

    Google Scholar 

  • [RS2] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness. London: Academic Press, 1975

    Google Scholar 

  • [RS3] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV. Analysis of Operators. London: Academic Press, 1978

    Google Scholar 

  • [SI] Simon, B.: Resonances in N-body quantum systems with dilation analytic potentials and the foundations of time-dependent perturbation theory. Ann. Math.97, 247 (1973)

    Google Scholar 

  • [SC] Schwinger, J.: Selected Papers on Quantum Electrodynamics, New York: Dover, 1958

    Google Scholar 

  • [W] Weisskopf, V., Wigner, E.P.: Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichtheorie. Z. Phys.63, 54 (1930)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakšić, V., Pillet, C.A. On a model for quantum friction, II. Fermi's golden rule and dynamics at positive temperature. Commun.Math. Phys. 176, 619–644 (1996). https://doi.org/10.1007/BF02099252

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099252

Keywords

Navigation