Skip to main content
Log in

An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Precise necessary and sufficient conditions on the velocity statistics for mean field behavior in advection-diffusion by a steady incompressible velocity field are developed here. Under these conditions, a rigorous Stieltjes integral representation for effective diffusivity in turbulent transport is derived. This representation is valid for all Péclet numbers and provides a rigorous resummation of the divergent perturbation expansion in powers of the Péclet number. One consequence of this representation is that convergent upper and lower bounds on effective diffusivity for all Peclet numbers can be obtained utilizing a prescribed finite number of terms in the perturbation series. Explicit rigorous examples of steady incompressible velocity fields are constructed which have effective diffusivities realizing the simplest upper or lower bounds for all Péclet numbers. A nonlocal variational principle for effective diffusivity is developed along with applications to advection-diffusion by random arrays of vortices. A new class of rigorous examples is introduced. These examples have an explicit Stieltjes measure for the effective diffusivity; furthermore, the effective diffusivity behaves likek 0(Pe)1/2 in the limit of large Péclet numbers wherek 0 is the molecular diffusivity. Formal analogies with the theory of composite materials are exploited systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Csanady, G.T.: Turbulent diffusion in the environment. Geophysics and Astrophysics Monographs, Dordrecht, Holland: D. Reidel 1973

    Google Scholar 

  2. Young, W., Pumir, A., Pomeau, Y.: Phys. Fluids A1, 462 (1989)

    Google Scholar 

  3. Koch, D.L., Cox, R.G., Brenner, H., Brady, J.F.: J. Fluid Mech.200, 173–178 (1989)

    Google Scholar 

  4. Krommes, J.A., Smith, R.A.: Ann. Phys.177, 246 (1987)

    Google Scholar 

  5. Mathéron, G., De Marsily, G.: Water resources research, Vol. 16 (5), 901–917 (1980)

    Google Scholar 

  6. Bouchaud, J.P., Comptet, A., Georges, A., Le Doussal, P.: J. Phys. (Paris)48, 1445 (1987)

    Google Scholar 

  7. Avellaneda, M., Majda, A.J.: Mathematical models with exact renormalization for turbulent transport. Commun. Math. Phys.131, 381–429 (1990)

    Google Scholar 

  8. Kubo, R.: Math. Phys.4, 174 (1963)

    Google Scholar 

  9. McLaughlin, D., Papanicolaou, G.C., Pironneau, O.: SIAM J. Appl. Math.45, 780 (1985)

    Google Scholar 

  10. Papanicolaou, G.C., Varadhan, S.R.S.: In: Random fields, Coll. Math. Soc. Janos Bolyai, Vol. 27, pp. 835–873. Fritz, J., Lebowitz, J.L., Szasz, D. (eds.). Amsterdam: North-Holland 1982

    Google Scholar 

  11. Tartar, L.: Cours Peccot. Collège de France, 1977–1978

  12. Bensoussan, A., Lions, J.L., Papanicolaou, G.C.: Asymptotic analysis for periodic structures. Amsterdam: North-Holland 1978

    Google Scholar 

  13. Oelschlager, K.: Ann. Prob.16 (3), 1084–1126 (1988)

    Google Scholar 

  14. Osada, H.: In: Proceedings Fourth Japanese-USSR Symp. in Prob. Theory. Lecture Notes in Mathematics, Vol. 1021, pp. 507–517. Berlin Heidelberg New York: Springer 1983

    Google Scholar 

  15. Kraichnan, R.: Complex Systems1, 805–820 (1987)

    Google Scholar 

  16. Yakhot, V., Orszag, S.: Analysis of the ε-expansion in turbulence theory: approximate renormalization group for diffusion of a passive scalar in a random velocity field. Preprint, October 1988

  17. Baker, Jr., G.A., Gammel, J.L.: The Padé approximant in theoretical physics. New York: Academic Press 1970

    Google Scholar 

  18. Childress, S., Soward, A.: Scalar transport and alpha-effect for a family of cat's eye flows. Preprint, Sept. 1988

  19. Golden, K., Papanicolaou, G.C.: Commun. Math. Phys.90, 473 (1983)

    Google Scholar 

  20. Berman, D.: Phys. Rep. Phys. Lett.C43, 377 (1978)

    Google Scholar 

  21. Milton, G.W.: J. Appl. Phys.52, 5286 (1982)

    Google Scholar 

  22. Battacharya, R., Gupta, V., Walker, H.F.: SIAM J. Appl. Math.49, 1 (1989)

    Google Scholar 

  23. Wolynes, P.G.: Phys. Rev.A 11, 1700 (1975)

    Google Scholar 

  24. Kraichnan, R.:, p. 129

    Google Scholar 

  25. Hashin, Z., Shtrikman, S.J.: Mech. Phys. Solids11, 127–140 (1963)

    Google Scholar 

  26. Schulgasser, K.: J. Appl. Phys.54, 1, 380 (1982)

    Google Scholar 

  27. Avellaneda, M., Majda, A.J.: Phys. Rev. Lett.62, 753 (1989)

    Google Scholar 

  28. Beran, M.: Statistical continuum theories. New York: Wiley 1968

    Google Scholar 

  29. Riesz, F., Nagy, B. Sz.: Leçons d'Analyse Fonctionelle. Paris-Budapest: Gauthier-Villars-Akademi Kiado 1952

    Google Scholar 

  30. Widder, D.V.: The Laplace transform. Princeton, NJ: Princeton University Press 1946

    Google Scholar 

  31. Bayly, B.: Ph. D. Thesis, Princeton University, 1986

  32. Wheeler, J.C., Gordon, R.G.: In ref. 17,, p. 99

    Google Scholar 

  33. Schulgasser, K.: J. Phys.C10, 407 (1977)

    Google Scholar 

  34. Avellaneda, M., Cherkaev, A.V., Lurie, K.A., Milton, G.W.: J. Appl. Phys.63 (10), 4989–5003 (1988)

    Google Scholar 

  35. Avellaneda, M., Milton, G.W.: SIAM J. Appl. Math.49 (3), 824–837 (1989)

    Google Scholar 

  36. Avellaneda, M.: Commun. Pure Appl. Math.4, 527 (1987)

    Google Scholar 

  37. Kim, C.B., Krommes, J.A.: J. Stat. Phys.59, 5/6, 1103 (1988)

    Google Scholar 

  38. Deutscher, G., Zallen, R., Adler, D.: Peroolation structures and processes. Am. Israel Phys. Soc.5, 297–321 (1983)

    Google Scholar 

  39. Kesten, H.: Percolation theory for mathematicians. Boston: Birkhäuser 1982

    Google Scholar 

  40. Nash, J.: Am. J. Math.80, 931–954 (1958)

    Google Scholar 

  41. Strook, D., Varadhan, S.R.S.: Multidimensional diffusion processes. Berlin Heidelberg New York: Springer 1979

    Google Scholar 

  42. Ladyženskaja, O.A., Solonnikov, V.A., Ural'ceva, N.N.: Linear and quasilinear equations of parabolic type. Providence, RI: Am. Math. Soc. 1968

    Google Scholar 

  43. Shraiman, B.: Phys. Rev.A36, 261 (1987)

    Google Scholar 

  44. Rosenbluth, M.N., Berk, H.L., Doxas, I., Horton, W.: Phys. Fluids30 (9), 2636 (1987)

    Google Scholar 

  45. Avellaneda, M., Kim, I.C., Torquato, S.: To appear in Phys. FluidsA, 1991

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.-T. Yau

Research partially supported by NSF DMS 90-05799 and ARO DAAL 03-89-K-0039 and AFOSR-90-0090

Research partially supported by NSF DMS 87-02864, ARO DAAL 03-89-K-0013 and ONR N 00014-89-J-1044

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avellaneda, M., Majda, A.J. An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows. Commun.Math. Phys. 138, 339–391 (1991). https://doi.org/10.1007/BF02099496

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099496

Keywords

Navigation