Skip to main content
Log in

Batalin-Vilkovisky algebras and two-dimensional topological field theories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

By a Batalin-Vilkovisky algebra, we mean a graded commutative algebraA, together with an operator Δ:A A ⊙+1 such that Δ2 = 0, and [Δ,a]−Δa is a graded derivation ofA for allaA. In this article, we show that there is a natural structure of a Batalin-Vilkovisky algebra on the cohomology of a topological conformal field theory in two dimensions. We make use of a technique from algebraic topology: the theory of operads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: The cohomology ring of the colored braid group. Mat. Zametki5, 227–231 (1969)

    Google Scholar 

  2. Beilinson, A., Ginzburg, V.: Infinitesimal structures of moduli space ofG-bundles. Duke Math. J.66, 63–74 (1992)

    Google Scholar 

  3. Birman, J.S.: Braids, links and mapping class groups. Ann. Math. Studies, no. 82, Princeton, NJ: Princeton U. Press 1974

    Google Scholar 

  4. Boardman, J.M., Vogt, R.M.: Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, no.347, Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  5. Cohen, F.R.: The homology ofC n+1-spaces,n≧0. In: The homology of iterated loop spaces, Lecture Notes in Mathematics, no.533, Berlin, Heidelberg, New York: Springer 1976, pp. 207–351

    Google Scholar 

  6. Dijkgraaf, R., Verlinde, H., Verlinde, E.: Topological strings ind<1. Nucl. Phys.B352, 59–86 (1991)

    Article  Google Scholar 

  7. Fadell, E., Neuwirth, L.: Configuration spaces. Math. Scand.10, 111–118 (1962)

    Google Scholar 

  8. Fulton, W., MacPherson, R.: A compactification of configuration spaces. To appear, Ann. Math.

  9. Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. (2)78, 59–103 (1963)

    Google Scholar 

  10. Getzler, E., Jones, J.D.S.: Operads and homotopy algebras. Preprint, 1993

  11. Ginzburg, V.A., Kapranov, M.M.: Koszul duality for operads. Preprint 1993

  12. Hochschild, G., Kostant, B., Rosenberg, A.: Differential forms on regular affine algebras. Trans. Am. Math. Soc.102, 383–408 (1962)

    Google Scholar 

  13. Hořava, P.: Spacetime diffeomorphisms and topologicalW -symmetry in two dimensional topological string theory. Preprint EFI-92-70, hep-th/9202020, Enrico Fermi Institute, 1993

  14. Joyal, A., Street, R.: The geometry of tensor calculus, I. Adv. Math.88, 55–112 (1991)

    Article  Google Scholar 

  15. Lerche, W., Vafa, C., Warner, N.P.: Chiral rings inN=2 superconformal field theories. Nucl. Phys.B324, 427–474 (1989)

    Article  Google Scholar 

  16. Lian, B.H., Zuckerman, G.J.: New perspectives on the BRST-algebraic structure of string theory. Preprint hep-th/9211072

  17. May, J.P.: The geometry of iterated loop spaces. Lecture Notes in Mathematics, no.271, Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  18. Schwarz, A., Penkava, M.: On some algebraic structures arising in string theory. Preprint UCD-92-03, University of California, Davis, hep-th/912071

  19. Priddy, S.B.: Koszul resolutions. Trans. Am. Math. Soc.152, 39–60 (1970)

    Google Scholar 

  20. Schwarz, A.: Geometry of Batalin-Vilkovisky quantization. Preprint hep-th/9205088, University of California, Davis 1992

    Google Scholar 

  21. Segal, G.: The definition of conformal field theory. Unpublished manuscript

  22. Witten, E.: The anti-bracket formalism. Mod. Phys. Lett.A5, 487–494 (1990)

    Article  Google Scholar 

  23. Witten, E.: On the structure of the topological phase of two-dimensional gravity. Nucl. Phys.B340, 281–332 (1990)

    Article  Google Scholar 

  24. Zwiebach, B.: Closed string field theory: quantum action and the B-V master equation. Nucl. Phys.B390, 33–152 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

The author is partially supported by a fellowship of the Sloan Foundation and a research grant of the NSF

Rights and permissions

Reprints and permissions

About this article

Cite this article

Getzler, E. Batalin-Vilkovisky algebras and two-dimensional topological field theories. Commun.Math. Phys. 159, 265–285 (1994). https://doi.org/10.1007/BF02102639

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102639

Keywords

Navigation