Skip to main content
Log in

Phylogenetic position of someChlorella species within the chlorococcales based upon complete small-subunit ribosomal RNA sequences

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Complete small-subunit rRNA (16S-like rRNA) coding region sequences were determined for eight species of the Chlorococcales (Chlorophyceae). The genera investigated includePrototheca, Ankistrodesmus, Scenedesmus, and fiveChlorella species. Distance matrix methods were used to infer a phylogenetic tree that describes evolutionary relationships between several plant and green algal groups. The tree exhibits a bifurcation within the Chlorococcales consistent with the division into Oocystaceae and Scenedesmaceae, but three of the fiveChlorella species are more similar to other algae than toChlorella vulgaris. All of the sequences contain primary and secondary structural features that are characteristic of 16S-like rRNAs of chlorophytes and higher plants.Anikstrodesmus stipitatus, however, contains a 394-bp group I intervening sequence in its 16S-like rRNA coding region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atmadja J, Brimacombe R, Maden BEH (1984)Xenopus laevis 18S ribosomal RNA: experimental determination of secondary structural elements, and locations of methyl groups in the secondary structure model. Nucleic Acids Res 12:2649–2667

    PubMed  Google Scholar 

  • Bold HC, Wynne MJ (1985) Introduction to the algae. Prentice-Hall, Englewood Cliffs NJ

    Google Scholar 

  • Cech TR (1988) Conserved sequences and structures of group I introns: building an active site for RNA catalysis—a review. Gene 73:259–271

    PubMed  Google Scholar 

  • Choi YC (1985) Structural organization of ribosomal RNAs from Novikoff hepatoma. I. Characterization of fragmentation products from 40S subunit. J Biol Chem 260:12769–12772

    PubMed  Google Scholar 

  • Dams E, Hendriks L, Van de Peer Y, Neefs JM, Smits G, Vandenbempt I, De Wachter R (1988) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 16(suppl):r87-r173

    PubMed  Google Scholar 

  • Eckenrode VK, Arnold J, Meagher RB (1985) Comparison of the nucleotide sequence of soybean 18S rRNA with the sequences of other small-subunit rRNAs. J Mol Evol 21:259–269

    Google Scholar 

  • Elwood HJ, Olsen GJ, Sogin ML (1985) The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliatesOxytricha nova andStylonychia pustulata. Mol Biol Evol 2: 399–410

    PubMed  Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565

    PubMed  Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    PubMed  Google Scholar 

  • Fott B, Lochhead R, Clémençon H (1975) Taxonomie der ArtenChlorella ultrasquamata Clém. et Fott undChlorella fusca Shih. et Krauss. Arch Protistenkd 117:288–296

    Google Scholar 

  • Fott B, Nováková M (1969) A monograph of the genusChlorella. The fresh water species. In: Fott B (ed) Studies in phycology. Academia, Prague, pp 10–74

    Google Scholar 

  • Gonzalez IL, Schmickel RD (1986) The human 18S ribosomal RNA gene: evolution and stability. Am J Hum Genet 38: 419–427

    PubMed  Google Scholar 

  • Götz H, Arnold CG (1980a) Comparative electrophoretic study on ribosomal proteins from algae. Planta 149:19–26

    Google Scholar 

  • Götz H, Arnold CG (1980b) Analysis of ribosomal proteins from various species of algae. Comparative electrophoretic study on proteins from chloroplast ribosomes. Biochem Physiol Pflanz 175:1–8

    Google Scholar 

  • Gunderson JH, Sogin ML (1986) Length variation in eukaryotic rRNAs: small-subunit rRNAs from the protistsAcanthamoeba castellanii andEuglena gracilis. Gene 44:63–70

    PubMed  Google Scholar 

  • Gunderson JH, Elwood HJ, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes and oomycetes. Proc Natl Acad Sci USA 84:5823–5827

    PubMed  Google Scholar 

  • Gutell RR, Weiser B, Woese CR, Noller HF (1985) Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol 32:155–216

    PubMed  Google Scholar 

  • Hegewald E (1982) Taxonomisch-morphologische Untersuchung vonScenedesmus-Isolaten aus Stammsarmmlungen. Algol Stud 29:375–406

    Google Scholar 

  • Hellmann V, Kessler E (1974) Physiologische und biochemische Beiträge zur Taxonomie der GattungChlorella. VIII. Die Basenzusammensetzung der DNS. Arch Microbiol 95: 311–318

    Google Scholar 

  • Hendriks L, De Baere R, Van Broeckhoven C, De Wachter R (1988) Primary and secondary structure of the 18S ribosomal RNA of the insect speciesTenebrio molitor. FEBS Lett 232: 115–120

    PubMed  Google Scholar 

  • Herzog M, Maroteaux L (1986) Dinoflagellate 17S rRNA sequence inferred from the gene sequence: evolutionary implications. Proc Natl Acad Sci USA 83:8644–8648

    Google Scholar 

  • Hindák F (1982) Taxonomic position of the chlorococcal algaChlorella zofingiensis Dönz 1934 (Chlorophyceae). Algol Stud 30:13–23

    Google Scholar 

  • Huss VAR, Sogin ML (1989) Primary structure of theChlorella vulgaris small subunit RNA coding region. Nucleic Acids Res 17:1255

    PubMed  Google Scholar 

  • Huss VAR, Dörr R, Grossmann U, Kessler E (1986) Deoxyribonucleic acid reassociation in the taxonomy of the genusChlorella. I.Chlorella sorokiniana. Arch Microbiol 145:329–333

    Google Scholar 

  • Huss VAR, Schwarzwälder E, Kessler E (1987a) Deoxyribonucleic acid reassociation in the taxonomy of the genusChlorella. II.Chlorella saccharophila. Arch Microbiol 147:221–224

    Google Scholar 

  • Huss VAR, Hehenberger A, Kessler E (1987b) Deoxyribonucleic acid reassociation in the taxonomy of the genusChlorella. III.Chlorella fusca andChlorella kessleri. Arch Microbiol 149:1–3

    Google Scholar 

  • Huss VAR, Wein KH, Kessler E (1988) Deoxyribonucleic acid reassociation in the taxonomy of the genusChlorella. IV.Chlorella protothecoides and its relationship to the genusPrototheca. Arch Microbiol 150:509–511

    Google Scholar 

  • Huss VAR, Huss G, Kessler E (1989a) Deoxyribonucleic acid reassociation and interspecies relationships of the genusChlorella (Chlorophyceae). Plant Syst Evol 168:71–82

    Google Scholar 

  • Huss VAR, Scharpf TK, Kessler E (1989b) Deoxyribonucleic acid reassociation in the taxonomy of the genusChlorella. V.Chlorella vulgaris, C. luteoviridis, C. minutissima, andC. zofingiensis. Arch Microbiol 152:512–514

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Google Scholar 

  • Kalina T, Punčochářová M (1987) Taxonomy of the subfamily Scotiellocystoideae Fott 1976 (Chlorellaceae, Chlorophyceae). Algol Stud 45:473–521

    Google Scholar 

  • Kerfin W, Kessler E (1978) Physiological and biochemical contributions to the taxonomy of the genusPrototheca. II. Starch hydrolysis and base composition of DNA. Arch Microbiol 116:105–107

    PubMed  Google Scholar 

  • Kessler E (1976) Comparative physiology, biochemistry, and the taxonomy ofChlorella (Chlorophyceae). Plant Syst Evol 125:129–138

    Google Scholar 

  • Kessler E (1980) Physiological and biochemical contributions to the taxonomy of the generaAnkistrodesmus andScenedesmus. V. Starch hydrolysis and new assignment of strains. Arch Microbiol 126:11–14

    Google Scholar 

  • Kessler E (1982a) Chemotaxonomy in the Chlorococcales. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol. 1. Elsevier Biomedical Press BV, Amsterdam, pp 111–135

    Google Scholar 

  • Kessler E (1982b) Physiological and biochemical contributions to the taxonomy of the genusPrototheca. III. Utilization of organic carbon and nitrogen compounds. Arch Microbiol 132: 103–106

    Google Scholar 

  • Kessler E (1984) A general review on the contribution of chemotaxonomy to the systematics of green algae. In: Irvine DEG, John DM (eds) Systematics of the green algae. Academic Press, London, pp 391–407

    Google Scholar 

  • Kessler E (1987) Separation ofChlorella ellipsoidea fromC. saccharophila (Chlorophyceae): no growth on mannitol and cadmium sensitivity. Plant Syst Evol 157:247–251

    Google Scholar 

  • Kiss T, Szkukálek A, Solymosy F (1989) Nucleotide sequence of a 17S (18S) rRNA gene from tomato. Nucleic Acids Res 17:2127

    PubMed  Google Scholar 

  • Komárek J (1987) Species concept in coccal green algae. Algol Stud 45:437–471

    Google Scholar 

  • Kümmel H, Kessler E (1980) Physiological and biochemical contributions to the taxonomy of the genusChlorella. XIII. Serological studies. Arch Mirobiol 126:15–19

    Google Scholar 

  • Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499

    PubMed  Google Scholar 

  • Menzel K, Wild A (1989) A comparative ultrastructural investigation of someNannochloris species (Chlorococcales) with particular reference to the systematic position ofNanochlorum eucaryotum. Botanica Acta 102:152–158

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78

    PubMed  Google Scholar 

  • Messing J, Carlson J, Hagen G, Rubenstein I, Oleson A (1984) Cloning and sequencing of the ribosomal RNA genes in maize: the 17S region. DNA 3:31–40

    PubMed  Google Scholar 

  • Nadakuvakaren MJ, McCracken DA (1973)Prototheca: an alga or a fungus? J Phycol 9:113–116

    Google Scholar 

  • Nairn CJ, Ferl RJ (1988) The complete nucleotide sequence of the small-subunit ribosomal RNA coding region for the cycadZamia pumila: phylogenetic implications. J Mol Evol 27: 133–141

    PubMed  Google Scholar 

  • Patterson GW (1974) Sterols of some green algae. Comp Biochem Physiol 47B:453–457

    Google Scholar 

  • Pore RS (1972) Nutritional basis for relatingPrototheca andChlorella. Can J Microbiol 18:1175–1177

    PubMed  Google Scholar 

  • Pore RS (1985)Prototheca taxonomy. Mycopathologia 90:129–139

    Google Scholar 

  • Pore RS, Barnett EA, Barnes WC Jr, Walker JD (1983)Prototheca ecology. Mycopathologia 81:49–62

    PubMed  Google Scholar 

  • Raué HA, Klootwijk J, Musters W (1988) Evolutionary conservation of structure and function of high molecular weight ribosomal RNA. Prog Biophys Mol Biol 51:77–129

    PubMed  Google Scholar 

  • Rausch H, Larsen N, Schmitt R (1989) Phylogenetic relationships of the green algaVolvox carteri deduced from smallsubunit ribosomal RNA comparisons. J Mol Evol 29:255–265

    PubMed  Google Scholar 

  • Rubtsov PM, Musakhanov MM, Zakharyev VM, Krayev AS, Skryabin KG, Bayev AA (1980) The structure of the yeast ribosomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene fromSaccharomyces cerevisiae. Nucleic Acids Res 8:5779–5794

    PubMed  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    PubMed  Google Scholar 

  • Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448

    PubMed  Google Scholar 

  • Sargent M, Zahn R, Walters B, Gupta R, Kaine B (1988) Nucleotide sequence of the 18S rDNA from the microalgaNanochlorum eucaryotum. Nucleic Acids Res 16:4156

    PubMed  Google Scholar 

  • Shihira I, Krauss RW (1965)Chlorella. Physiology and taxonomy of forty-one isolates. University of Maryland, College Park

    Google Scholar 

  • Soeder CJ (1980) Massive cultivation of microalgae: results and prospects. Hydrobiologia 72:197–209

    Google Scholar 

  • Sogin ML, Ingold A, Karlok M, Nielsen H, Engberg J (1986) Phylogenetic evidence for the acquisition of ribosomal RNA introns subsequent to the divergence of some of the majorTetrahymena groups. EMBO J 5:3625–3630

    PubMed  Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ, Rogelio AA, Peattie DA (1989) Phylogenetic meaning of the kingdom, concept: an unusual ribosomal RNA fromGiardia lamblia. Science 243: 75–77

    PubMed  Google Scholar 

  • Sudman MS (1974) Protothecosis. Am J Clin Pathol 61:10–19

    PubMed  Google Scholar 

  • Takaiwa F, Oono K, Sugiura M (1984) The complete nucleotide sequence of a rice 17S rRNA gene. Nucleic Acids Res 12: 5441–5448

    PubMed  Google Scholar 

  • Walker JD, Colwell RR, Vaituzis Z, Meyer SA (1975) Petroleum-degrading achlorophyllous algaPrototheca zopfii. Nature 254:423–424

    Google Scholar 

  • Walker JD, Pore RS (1978) Growth ofPrototheca isolated on n-hexadecane and mixed hydrocarbon substrate. Appl Environ Microbiol 35:694–697

    PubMed  Google Scholar 

  • Wilhelm C, Eisenbeis G, Wild A, Zahn R (1982)Nanochlorum eucaryotum: a very reduced coccoid species of marine Chlorophyceae. Z Naturforsch 37c:107–114

    Google Scholar 

  • Woese CR, Gutell R, Gupta R, Noller HF (1983) Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 47:621–669

    PubMed  Google Scholar 

  • Woese CR, Fox E (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    PubMed  Google Scholar 

  • Zahn RK (1984) A green alga with minimal eukaryotic features:Nanochlorum eucaryotum. Origins Life 13:289–303

    Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huss, V.A.R., Sogin, M.L. Phylogenetic position of someChlorella species within the chlorococcales based upon complete small-subunit ribosomal RNA sequences. J Mol Evol 31, 432–442 (1990). https://doi.org/10.1007/BF02106057

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02106057

Key words

Navigation