Skip to main content
Log in

Method of the generating functional

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

This is a survey of the present state of the method of the generating functional which makes it possible to effectively study distributions of point random measures on a complete, separable metric space. The principal attention is devoted to the study of distributions of configurations of infinite systems of statistical physics — Gibbs distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. é. A. Arinshtein, “The phenomenon of crystallization in statistical physics,” Dokl. Akad. Nauk SSSR,112, No. 4, 615–618 (1957).

    Google Scholar 

  2. é. A. Arinshtein and B. G. Abrosimov, “Approximate equations for a radial distribution function,” Zh. Strukt. Khim.,9, No. 6, 1064–1070 (1968).

    Google Scholar 

  3. M. S. Barlett, Introduction to the Theory of Stochastic Processes [Russian translation], IL, Moscow (1958).

    Google Scholar 

  4. P. Billingsley, Convergence of Probability Measures, Wiley (1968).

  5. N. N. Bogolyubov, Selected Works [in Russian], Vol. 2, Naukova Dumka, Kiev (1970), pp. 99–209.

    Google Scholar 

  6. N. N. Bogolyubov, D. Ya. Petrina, and B. I. Khatset, “Mathematical description of the equilibrium state of classical systems on the basis of the formalism of the canonical ensemble,” Teor. Mat. Fiz.,1, No. 2, 251–274 (1969).

    Google Scholar 

  7. N. N. Bogolyubov and B. I. Khatset, “On some mathematical questions of the theory of statistical equilibrium,” Dokl. Akad. Nauk SSSR,66, No. 3, 321–324 (1949).

    Google Scholar 

  8. N. V. Glukhikh and G. I. Nazin, “Equivalence of the Gibbs ensembles and the problem of phase transitions in classical statistical physics,” Teor. Mat. Fiz.,38, No. 3, 417–421 (1979).

    Google Scholar 

  9. N. S. Gonchar and I. M. Kopych, “A new approach to computing the radial distribution function of simple fluids,” Ukr. Fiz. Zh.,26, No. 11, 1805–1810 (1981).

    Google Scholar 

  10. Yu. L. Daletskii and S. V. Fomin, Measures and Differential Equations in Infinite-Dimensional Spaces [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  11. N. Dunford and J. Schwartz, Linear Operators. Part 1. General Theory, Wiley (1958).

  12. R. L. Dobrushin, “Gibbs random fields for lattice systems with pair interaction,” Funkts. Anal. Prilozhen.,2, No. 4, 31–43 (1968).

    Google Scholar 

  13. R. L. Dobrushin, “The problem of uniqueness of a Gibbs random field and the problem of phase transitions,” Funkts. Anal. Prilozhen.,2, No. 4, 44–57 (1968).

    Google Scholar 

  14. R. L. Dobrushin, “Gibb's random fields. The general case,” Funkts. Anal. Prilozhen.,3, No. 1, 27–35 (1969).

    Google Scholar 

  15. R. L. Dobrushin and R. A. Minlos, “Existence and continuity of pressure in classical statistical physics,” Teor. Veroyatn. Primen.,12, No. 4, 595–618 (1972).

    Google Scholar 

  16. M. Zamanskii, Introduction to Modern Algebra and Analysis [Russian translation], Nauka, Moscow (1974).

    Google Scholar 

  17. I. Kerstan, K. Mattes, and I. Mekke, Infinitely Divisible Point Processes [Russian translation], Nauka, Moscow (1982).

    Google Scholar 

  18. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Graylock (1961).

  19. S. G. Krein (ed.), Functional Analysis [in Russian], 2nd ed., Nauka, Moscow (1972).

    Google Scholar 

  20. V. V. Krivolapova, “Conditions of regularity of Gibbs states on countable sets,” Mat. Modeli Stat. Fiz., Tyumen (1982), pp. 61–67.

  21. V. V. Krivolapova, “Equivalence of Gibbs ensembles for classical lattice systems,” Teor. Mat. Fiz.,52, No. 2, 284–291 (1982).

    Google Scholar 

  22. V. V. Krivolapova and G. I. Nazin, “The method of the generating functional and Gibbs random fields on countable sets,” Teor. Mat. Fiz.,47, No. 3, 362–374 (1981).

    Google Scholar 

  23. R. A. Minlos, “Gibbs limit distributions,” Funkts. Anal. Prilozhen.,1, No. 2, 60–73 (1967).

    Google Scholar 

  24. R. A. Minlos, “Lectures on statistical physics,” Usp. Mat. Nauk,1, 133–190 (1963).

    Google Scholar 

  25. G. I. Nazin, “Limit distribution functions in classical statistical physics,” Teor. Mat. Fiz.,21, No. 3, 388–401 (1974).

    Google Scholar 

  26. G. I. Nazin, “Limit distribution functions of systems with multiparticle interaction in classical statistical physics,” Teor. Mat. Fiz.,25, No. 1, 132–140 (1975).

    Google Scholar 

  27. G. I. Nazin, “Description of Gibbs random fields by the method of the generating functional,” Teor. Mat. Fiz.,42, No. 4, 383–391 (1980).

    Google Scholar 

  28. G. I. Nazin, “Topological structure of the family of solutions of the Bogolyubov equation,” Teor. Mat. Fiz.,42, No. 2, 243–252 (1980).

    Google Scholar 

  29. G. I. Nazin, “The method of the generating functional of N. N. Bogolyubov in classical statistical physics,” International Symposium on Selected Problems of Statistical Mechanics. Duba (1981), pp. 158–164.

  30. M. C. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1. Functional Analysis, Academic Press (1972).

  31. V. N. Ryzhov and E. E. Tareeva, “On an equation for a rational distribution function,” Dokl. Akad. Nauk SSSR,257, No. 5, 1102–1104 (1981).

    Google Scholar 

  32. D. Ruelle, Statistical Mechanics. Rigorous Results [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  33. V. V. Ryazanov, “Construction of correlation functions by means of the generating functional,” Izv. Vyssh. Uchebn. Zaved., Fiz.,11, 129–130 (1978).

    Google Scholar 

  34. V. V. Ryazanov, “Models of the generating functional of a statistical system in the region of a phase transition,” Izv. Vyssh. Uchebn. Zaved., Fiz.,9, 44–47 (1983).

    Google Scholar 

  35. B. A. Sevast'yanov, Branching Processes [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  36. E. F. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. (1974).

  37. P. R. Halmos, Measure Theory, Springer-Verlag (1974).

  38. L. Schwartz, Analysis [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  39. A. Lenard, “Correlation functions and the uniqueness of the state in classical statistical mechanics,” Commun. Math. Phys.,30, 35–44 (1973).

    Article  Google Scholar 

  40. O. E. Lanford III and D. Ruelle, “Observables at infinity and states with short range correlations in statistical mechanics,” Commun. Math. Phys.,3, No. 3, 194–215 (1969).

    Article  Google Scholar 

  41. J. Mecke, “Eine Charakterisierung des Westcottschen Funktionals,” Math. Nachr.,80, 295–313 (1977).

    Google Scholar 

  42. J. E. Moyal, “The general theory of stochastic population processes,” Acta Math.,108, 1–31 (1962).

    Google Scholar 

  43. L. Onsager, “Crystal statistics. I. A two-dimensional model with an order-disorder transition,” Phys. Rev.,65, 117–149 (1944).

    Article  Google Scholar 

  44. D. Ruelle, “Superstable interactions in classical statistical mechanics,” Commun. Math. Phys.,18, No. 2, 127–159 (1970).

    Article  Google Scholar 

  45. L. Van Hove, “Quelques proprietes generales de l'integrale de configuration d'un systeme de particules avec interaction,” Physica,15, 951–961 (1949).

    Article  Google Scholar 

  46. D. Vere-Jones, “Some applications of probability generating functionals to the study of input-output streams,” J. R. Statist. Soc. Ser.,B30, No. 2, 321–333 (1968).

    Google Scholar 

  47. M. Westcott, “The probability generating functionals,” J. Austral. Math. Soc.,14, No. 4, 446–448 (1972).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Teoriya Veroyatnostei, Matematicheskaya Statistika, Teoreticheskaya Kibernetika, Vol. 22, pp. 159–201, 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazin, G.I. Method of the generating functional. J Math Sci 31, 2859–2886 (1985). https://doi.org/10.1007/BF02116603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02116603

Keywords

Navigation