Skip to main content
Log in

Multilevel preconditioning — Appending boundary conditions by Lagrange multipliers

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

For saddle point problems stemming from appending essential boundary conditions in connection with Galerkin methods for elliptic boundary value problems, a class of multilevel preconditioners is developed. The estimates are based on the characterization of Sobolev spaces on the underlying domain and its boundary in terms of weighted sequence norms relative to corresponding multilevel expansions. The results indicate how the various ingredients of a typical multilevel framework affect the growth rate of the condition numbers. In particular, it is shown how to realize even condition numbers that are uniformly bounded independently of the discretization.

These investigations are motivated by the idea of employing nested refinable shift-invariant spaces as trial spaces covering various types of wavelets that are of advantage for the solution of boundary value problems from other points of view. Instead of incorporating the boundary conditions into the approximation spaces in the Galerkin formulation, they are appended by means of Lagrange multipliers leading to a saddle point problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams,Sobolev Spaces (Academic Press, 1978).

  2. R.E. Bank, B.D. Welfert and H. Yserentant, A class of iterative methods for solving saddle point problems, Numer. Math. 56 (1990) 645–666.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Braess,Finite Elemente (Springer, 1992).

  4. J.H. Bramble, The Lagrange multiplier method for Dirichlet's problem, Math. Comp. 37 (1981) 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.H. Bramble and J.E. Pasciak, A preconditioning technique for indefinite systems resulting from mixed approximations for elliptic problems, Math. Comp. 50 (1988) 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  6. J.H. Bramble and J.E. Pasciak, A preconditioned algorithm for eigenvector/eigenvalue computation, Manuscript (June 1992).

  7. J.H. Bramble, J.E. Pasciak and J. Xu, Parallel multilevel preconditioners, Math. Comp. 55 (1990) 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Brezzi and M. Fortin,Mixed and Hybrid Finite Element Methods (Springer, 1991).

  9. J.M. Carnicer, W. Dahmen and J.M. Peña, Local decomposition of refinable spaces, Manuscript (1994).

  10. A. Cohen, W. Dahmen and R.A. DeVore, private communication.

  11. S. Dahlke and A. Kunoth, Biorthogonal wavelets and multigrid, in:Adaptive Methods — Algorithms, Theory and Applications, eds. W. Hackbusch and G. Wittum, NNFM Series Vol. 46 (Vieweg, 1994) pp. 99–119.

    Google Scholar 

  12. M. Dæhlen and T. Lyche, Box splines and applications, in:Geometric Modelling: Methods and Applications, eds. H. Hagen and D. Roller (Springer, 1991) pp. 35–94.

  13. W. Dahmen, Decomposition of refinable spaces and applications to operator equations, in:Algorithms for Approximation III, eds. M.G. Cox and J.C. Mason (Baltzer, Amsterdam, 1993).

    Google Scholar 

  14. W. Dahmen, Stability of multiscale transformations, Manuscript (1994).

  15. W. Dahmen and A. Kunoth, Multilevel preconditioning, Numer. Math. 63 (1992) 315–344.

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Dahmen and C.A. Micchelli, Using the refinement equation for evaluating integrals of wavelets, SIAM J. Numer. Anal. 30 (1993) 507–537.

    Article  MATH  MathSciNet  Google Scholar 

  17. W. Dahmen, S. Prößdorf and R. Schneider, Multiscale methods for pseudodifferential equations, in:Recent Advances in Wavelet Analysis, eds. L.L. Schumaker and G. Webb (Academic Press, 1994) pp. 191–235.

  18. I. Daubechies,Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Maths. (SIAM, 1992).

  19. R.A. DeVore, B. Jawerth and V.A. Popov, Compression of wavelet decompositions, Amer. J. Math. 114 (1992) 737–785.

    Article  MATH  MathSciNet  Google Scholar 

  20. R.A. DeVore and B. Lucier, Wavelets, Acta Numerica 1 (1991) 1–56.

    Article  MathSciNet  Google Scholar 

  21. R.A. DeVore and V.A. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305 (1988) 397–414.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Jonsson and H. Wallin,Function Spaces on Subsets ofn (Harwood Academic Publishers, Mathematical Reports, Vol. 2, 1984).

  23. A. Kunoth,Multilevel Preconditioning (Verlag Shaker, Aachen, Germany, 1994).

    MATH  Google Scholar 

  24. A. Kunoth, Computing Integrals of Refinable Functions — Documentation of the Program, Version 1.0, Techn. Rep. STF33A94045, SINTEF, Oslo, Norway (September 1994).

  25. J.L. Lions and E. Magenes,Non-Homogeneous Boundary Value Problems and Applications, Vol. I (Springer, 1972).

  26. T. Lyche and K. Mørken, Spline-wavelets of minimal support, in:Numerical Methods in Approximation Theory, vol. 9, eds. D. Braess and L.L. Schumaker (Birkhäuser, 1992) pp. 177–194.

  27. S.M. Nikolskii,Approximation of Functions of Several Variables and Imbedding Theorems (Nauka, Moscow, 2nd ed., 1977).

    Google Scholar 

  28. P. Oswald, On function spaces related to finite element approximation theory, Z. Anal. Anwendungen 9 (1990) 43–64.

    MATH  MathSciNet  Google Scholar 

  29. P. Oswald, Hierarchical conforming finite element methods for the biharmonic equation, SIAM J. Numer. Anal. 29 (1992) 1610–1625.

    Article  MATH  MathSciNet  Google Scholar 

  30. P. Oswald, On discrete norm estimates related to multilevel preconditioners in the finite element method, in:Constructive Theory of Functions, eds. K.G. Ivanov, P. Petrushev and B. Sendov (Bulg. Acad. Sci., Sofia, 1992) pp. 203–214.

    Google Scholar 

  31. P. Oswald, Stable splittings of Sobolev spaces and fast solution of variational problems, Preprint Nr. Math/92/5, Friedrich-Schiller-Universität Jena (May 1992).

  32. S. Riemenschneider and Z. Shen, Wavelets and pre-wavelets in low dimensions, J. Approx. Theory 71 (1992) 18–38.

    Article  MATH  MathSciNet  Google Scholar 

  33. H. Triebel,Interpolation Theory, Function Spaces, Differential Operators (Dt. Verl. Wiss., Berlin, 1978).

    Google Scholar 

  34. R. Verfürth, A combined conjugate gradient-multigrid algorithm for the numerical solution of the Stokes problem, IMA J. Numer. Anal. 4 (1984) 441–455.

    MATH  MathSciNet  Google Scholar 

  35. J. Xu, Theory of multilevel methods, Report AM 48, Department of Mathematics, Pennsylvania State University (1989).

  36. H. Yserentant, On the multilevel splitting of finite element spaces, Numer. Math. 49 (1986) 379–412.

    Article  MATH  MathSciNet  Google Scholar 

  37. H. Yserentant, Two preconditioners based on the multilevel splitting of finite element spaces, Numer. Math. 58 (1990) 163–184.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work of the author is partially supported by the Deutsche Forschungsgemeinschaft under grant numbers Ku1028/1-1 and Pr336/4-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunoth, A. Multilevel preconditioning — Appending boundary conditions by Lagrange multipliers. Adv Comput Math 4, 145–170 (1995). https://doi.org/10.1007/BF02123477

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02123477

Keywords

AMS subject classification

Navigation