Skip to main content
Log in

The «Skyhook»: A shuttle-borne tool for low-orbital-altitude research

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Satelliti collegati con cavo allo Shuttle in orbita contribuiscono in modo significativo alla versatilità del veicolo. Se lo Shuttle è in orbita a 200 km di altezza, l'uso di un cavetto lungo 100 km attaccato con un estremo allo Shuttle e con l'altro ad un satellite rende possibile una grande varietà di misure elettromagnetiche nella magnetosfera. Il satellite collegato con cavo (un sottosatellite) può essere calato dallo Shuttle giù fino ad altezze dell'ordine di 100 km in una banda di quote che ha una enorme importanza dal punto di vista della sperimentazione dell'alta atmosfera ed inoltre dal punto di vista della misura del gradiente di gravità.

Dall'analisi preliminare abbiamo trovato che uno dei maggiori problemi che presenta il sistema, il riscaldamento del filo e del satellite dovuto alla resistenza dell'aria, può essere risolto nell'ambito del presente stato dell'arte nella tecnologia dei cavi e dell'isolamento termico.

Le masse del sistema sono anche ragionevoli; infatti un sistema con un cavo lungo 100 km ed un rocchetto sullo Shuttle, collegante un sottosatellite di 100 kg, verrebbe ad avere una massa di 120 kg.

Summary

A Shuttle-borne tethered satellite has the potential of contributing significantly to the scientific versatility of the Shuttle Orbiter, that will be launched by NASA in the early '80s.

If the Shuttle is in a 200 km orbit, the use of a 100 km tether connected to the Shuttle at one end and to the satellite at the other makes the performance of various relevant electromagnetic measurements in the magnetosphere possible. The tethered satellite (a subsatellite) can also be lowered from the Shuttle down to heights in the vicinity of 100 km, to an altitude band that has great importance from the standpoint of both upper atmospheric experimentation and gravity-gradient measurements.

From a preliminary analysis, we find that one of the major problem areas of the system — the heating of the wire and of the subsatellite due to air drag — can be solved within the present state of the art in wire technology and heat shielding.

System masses are also reasonable: In fact, a system with a 100 km wire and a Shuttle-borne reel, tethering a 100 kg subsatellite, would have a mass no larger than 120 kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • R. J. Anderle,Observations of resonance effects on satellite orbits arising from the thirteenth and fourteenth order tesseral gravitational coefficients, Journ. Geophys. Res., vol. 70, pp. 2453–2458, 1965.

    Google Scholar 

  • C. C. Bell,Lunar orbiter selenodesy feasibility demonstration, Final Report to NASA, Contract NAS8-24788, January, 1970.

  • C. C. Bell, R. L. Forward andH. P. Williams,Simulated terrain mapping with the rotating gravity gradiometer. In «Advances in Dynamic Gravimetry», ed. by W. T. Kattner, Instr. Soc. Amer., Pittsburgh, Pennsylvania, pp. 115–128, 1971.

    Google Scholar 

  • A. Dalgarno, W. B. Hanson, N. W. Spencer, andE. R. Schmerling,The Atmosphere Explorer Mission, Radio Sci., vol. 8, pp. 263–266, 1973.

    Google Scholar 

  • R. L. Forward,A review of artificial satellite gravity gradiometer techniques for geodesy, Presented at the First International Symposium on the Use of Artificial Satellites for Geodesy and Geophysics, Athens, May; also in Hughes Aircraft Company Res. Rep. No. 469, 1973.

  • E. R. Ganssle,Gravity gradiometry mission feasibility study, Final Report to NASA, Contract NAS 8-21182, 1967.

  • E. M. Gaposchkin, editor «1973 Smithsonian Institution Standard Earth (III)», Smithsonian Astrophysic Obs. Spec. Rep. No. 353, pp. 388, 1973.

  • R. J. Glaser, andE. J. Sherry,Comparison of satellite gravitational techniques, Presented at the American Geophysical Union and Defense Mapping Agency Symposium on Earth Gravity Models and Related Problems, St. Louis Air Force Station, Missouri, August, 1972.

    Google Scholar 

  • L. G. Jacchia,Revised static models of the thermosphere and exosphere with empirical temperature profiles, Smithsonian Astrophysic, Obs. Spec. Rep. No. 332, p. 113, 1971.

  • L. G. Jacchia, andJ. W. Slowey,A study of the variations in the thermosphere related to solar activity. In «Space Research XIII», ed. by M. J. Rycroft and S. K. Runcorn, Akademie-Verlag, Berlin, pp. 343–348, 1973.

    Google Scholar 

  • W. M. Kaula, «The Terrestrial Environment: Solid-Earth and Ocean Physics (editor)»,Report of a Study at Williamstown, Massachusetts, NASA CR-1579, 1970.

  • W. M. Kaula,Global gravity and tectonics. In «The Nature of the Solid Earth», ed. by E. C. Robertson, J. F. Hays, and L. Knopoff, McGraw-Hill Book Co., New York, pp. 385–405, 1972.

    Google Scholar 

  • National aeronautics and space administration,Earth and Ocean Physics Applications Program, Vols. I and II, NASA, Washington, D. C., September, 1972.

    Google Scholar 

  • National aeronautics and space administration,Background Information for Atmospheric Magnetospheric Plasma in Space (AMPS) Working Group, NASA Marshal Space Flight Center, April, 1974.

  • P. H. Savet,et al., Gravity gradiometry, Final Report to NASA, Contract NAS 8-21130, December, 1967.

  • D. E. Smith, F. J. Lerch, andC. A. Wagner,A gravitational field model for the earth. In «Space Research XIII», ed. by M. J. Rycroft and S. K. Runcorn, Akademie-Verlag, Berlin, pp. 11–20, 1973.

    Google Scholar 

  • L. G. D. Thompson,Gravity gradient instruments study, Final Report to NASA, Contract NASW-1328, August, 1966.

  • L. G. D. Thompson,Gravity gradient preliminary investigation, Final Report to NASA, Contract NAS 9-9200, January, 1970.

  • L. G. D. Thompson, R. O. Bock, andP. H. Savet,Gravity gradient sensors and their applications for manned orbital space-craft. Presented at the Third Goddard Memorial Symposium, American Astronomical Society, Washington, D. C., March, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Prof. Carlo Ferrari, on the occasion of his retirement from teaching, as a modest contribution in recognition of his merits as a great teacher and scientist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombo, G., Gaposchkin, E.M., Grossi, M.D. et al. The «Skyhook»: A shuttle-borne tool for low-orbital-altitude research. Meccanica 10, 3–20 (1975). https://doi.org/10.1007/BF02148280

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02148280

Keywords

Navigation