Skip to main content
Log in

Possibilities of applying the Piloyan method of determination of decomposition activation energies in the differential thermal analysis of polynitroaromatic compounds and of their derivatives

Part I. Polymethyl and polychloro derivatives of 1,3,5-trinitro-benzene

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Conditions are presented for application of the Piloyan method to the DTA of poly-nitro aromatic compounds. Activation energies (E) of the thermal decomposition and the initial valuesT D of the exotherms are determined for trinitrotoluene, trinitro-m-xylene, trinitromesitylene, picryl chloride and dichlorotrinitrobenzene. Linear relationships are derived between the termsE · T D and published kinetic data on these compounds, obtained by an isothermal manometric method. The mechanisms of the primary steps in the thermolyses of these polynitro compounds are discussed. A negative influence on their thermal stability has been confirmed, arising from the contact of the measured compounds with the glass surface.

Résumé

On présente les conditions de l'application de la méthode Piloyan à l'ATD des composés polynitroaromatiques. On a déterminé les énergies d'activation (E) et les valeurs initialesT D des réactions exothermiques pour le trinitrotoluène, le trinitro-m-xylène, le trinitromé sitylène, le chlorure picrylique et le dichloro-trinitrobenzène. On a trouvé des corrélations linéaires entre les valeursE.T D et les données cinétiques publiées des composés mentionnés obtenues par une méthode isotherme manométrique. On discute le mécanisme de l'étape primaire de la thermolyse des composés polynitrés étudiés. On a confirmé l'influence négative, sur la stabilité thermique, provenant du contact de ces composés avec le verre.

Zusammenfassung

Die Bedingungen der Anwendung der Methode von Piloyan bei der DTA polynitroaromatischer Verbindungen werden beschrieben. Die Aktivierungsenergien (E) der thermischen Zersetzung und die AnfangswerteT D der exothermen VorgÄnge werden für Trinitrotoluol, Trinitro-m-xylol, Trinitromesitylol, Picrylchlorid und Dichlortrinitro-benzol bestimmt. Lineare ZusammenhÄnge werden zwischen den WertenE.T D und den unter Anwendung der isothermen manometrischen Methode erhaltenen veröffentlichten kinetischen Angaben der besagten Verbindungen, abgeleitet. Der Mechanismus der primÄren Stufe in der Thermolyse der untersuchten Polynitroverbindungen wird diskutiert. Der sich aus dem Kontakt der gemessenen Verbindungen mit dem Glas ergebende negative Einflu\ auf ihre StabilitÄt wird bestÄtigt.

РЕжУМЕ

пРЕДстАВлЕНы УслОВИ ь пРИМЕНЕНИь МЕтОДА пИлОьНА Дль ДтА пОлИН ИтРОАРОМА-тИЧЕскИх сОЕДИНЕНИИ. ОпРЕДЕлЕ Ны ЁНЕРгИИ АктИВАцИИ (E) тЕРМИЧЕскОгО РАжлОж ЕНИь И НАЧАлАT D ЁкжОтЕРМ Дль тРИНИтРОтОлУОлА, тРИНИтРО-М-ксИлОлА, тР ИНИтРОМЕжИтИлА, пИк-Р ИлхлОРИДА И тРИхлОРтРИНИтРОБЕ НжОлА. УстАНОВлЕНА лИНЕИНАь ВжАИМОсВьж ь МЕжДУ ВЕлИ-ЧИНАМИ E · т −1D И кИНЕтИЧЕскИМИ ДАННыМИ, ОпУБлИкОВАННыМИ И кО тОРыЕ БылИ пОлУЧЕНы ИжОтЕРМИЧЕскИМ МАНО МЕтРИЧЕскИМ МЕтОДОМ. ОБсУжДЕН МЕхАНИжМ пЕРВОНАЧАл ьНОИ стАцИИ тЕРМОлИжА ИсслЕДОВА ННых пОлИНИтРОАРОМА тИЧЕскИх сОЕДИНЕНИИ. ВОжНИкАУ ЩИИ ВслЕДстВИИ кОНтАктА ИжУЧЕННых с ОЕДИНЕНИИ с пОВЕРхНО стьУ стЕклА ЁФФЕкт ОкАжыВАЕт ОтР ИцАтЕльНОЕ ВлИьНИЕ НА тЕРМИЧЕск УУ стАБИльНОсть сОЕД ИНЕНИИ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S.Svetlov, Khim. Tekhnol., (1958) 422.

  2. K. K. Andreev andA. F. Belyaev, Teoriya vzryvchatykh veschestv. (Theory of blasting materials) Gos. nauchnotekhn. izdat. Oborongiz, Moscow, 1960.

    Google Scholar 

  3. K. K. Andreev, Termicheskoye razlozheniye i goreniye vryvchatykh veschestv. (Thermal decomposition and combustion of blasting materials), Izdat. Nauka, Moscow, 1966.

    Google Scholar 

  4. Yu. Ya. Maksimov andV. A. Koroban, Teoriya vzryvchatykh veschestv. (Theory of blasting materials) Izdat. Vyschaya schkola, Moscow, 1967, p. 92.

    Google Scholar 

  5. R. N.Rogers, Jahrstag., Inst. Chem. Treib-Explosivstoffe Fraunhofer-Ges. 1971 (Publ. 1972) p. 41.

  6. G. Krien, Differential Thermal Analysis ed. R. C. Mackenzie, Vol. 2. Academic Press, London, 1972, p. 353.

    Google Scholar 

  7. S. Takeyama andT. Yoshida, Kogyo Kayaku 36 (1975) 238.

    Google Scholar 

  8. L. W. Collins andL. D. Shaws, Thermochim. Acta, 21 (1977) 1.

    Article  Google Scholar 

  9. Y. Hara, S. Kamei andH. Osada, Kogyo Kayaku, 34 (1973) 147.

    Google Scholar 

  10. Y. Hara, S. Kamei andH. Osada, Kogyo Kayaku, 34 (1973) 253.

    Google Scholar 

  11. Y. Hara andH. Osada, Kogyo Kayaku, 34 (1973) 343.

    Google Scholar 

  12. E. Kitajima, T. Hayakawa, T. Hashizume, S. Akihisa, Y. Hara andH. Osada, Kogyo Kayaku, 35 (1974) 22.

    Google Scholar 

  13. Y. Hara andH. Osada, Kogyo Kayaku, 35 (1974) 26.

    Google Scholar 

  14. Y. Hara, H. Eda andH. Osada, Kogyo Kayaku, 36 (1975) 66.

    Google Scholar 

  15. Y. Hara, H. Eda andH. Osada, Kogyo Kayaku, 36 (1975) 250.

    Google Scholar 

  16. Y. Hara, H. Eda andH. Osada, Kogyo Kayaku, 36 (1975) 255.

    Google Scholar 

  17. Y. Hara andH. Osada, Kogyo Kayaku, 37 (1976) 233.

    Google Scholar 

  18. Y. Hara, F. Kawano andH. Osada, Kogyo Kayaku, 38 (1977) 266.

    Google Scholar 

  19. Y. Hara, H. Matsubara andH. Osada, Kogyo Kayaku, 38 (1977) 338.

    Google Scholar 

  20. J. šesták andG. Bergen, Chem. Listy, 64 (1970) 695.

    Google Scholar 

  21. A. BlaŽek, Termická analýza (Thermal analysis). SNTL Prague, 1972.

    Google Scholar 

  22. S.Zeman and E.Zemanová (to be published).

  23. H. E. Kissinger, J. Res. Nat. Bur. Std., 57 (1956) 217.

    Google Scholar 

  24. H. E. Kissinger, Anal. Chem., 29 (1957) 1702.

    Article  Google Scholar 

  25. W. W. Wendlandt, Thermal Methods of Analysis. Wiley, New York, 1974.

    Google Scholar 

  26. W. W. Wendlandt, Termicheskiye metody analiza. (Thermal Methods of Analysis). Izdat. Mir, Moscow, 1978, p. 200.

    Google Scholar 

  27. R. L. Reed, L. Weber andB. S. Gottfried, J. & E. C. Fundamentals 4 (1965) 38.

    Google Scholar 

  28. R. Melling, F. W. Wilburn andR. M. McItosh, Anal. Chem., 41 (1969) 1275.

    Article  Google Scholar 

  29. G. O. Piloyan, I. D. Ryabchikov andO. S. Novikova, Nature, 212 (1966) 1229.

    Google Scholar 

  30. S. Zeman, Thermostable Polynitroaromatic Compounds. Part I. Ph. D. Thesis, Univ. Chem. Technol., Pardubice, June 1973.

    Google Scholar 

  31. S. Zeman, Thermostable Polynitroaromatic Compounds. Part II. Sci. report PO 2-79. ÚŘad pro vyná lezy a objevy, Prague, Jan. 1979.

    Google Scholar 

  32. S. Zeman, Some Problems of Production of Dinitrosopentamethylenetetramine. Part I. Res. report 7503863, UVTEI-STK, Prague, 1975.

    Google Scholar 

  33. A. Tall, The Stability of Chempor. Final res. report 7605465, UVTEI-STK, Prague, 1976.

    Google Scholar 

  34. G. O. Piloyan, Vvedeniye v teoriyu termicheskogo analiza. (Introduction in the theory of thermal analysis). Izdat. Nauka, Moscow, 1967, p. 134.

    Google Scholar 

  35. K. K. Andreev, Teoriya vzryvchatykh veschestv. (Theory of blasting materials). Izdat Oborongiz, Moscow, 1963.

    Google Scholar 

  36. K. K. Andreev, Teoriya vzryvchatykh veschestv. (Theory of blasting materials). Izdat Vyschaya schkola, Moscow, 1967.

    Google Scholar 

  37. V. F. Sapranovich, Yu. Ya. Maksimov andM. E. Makrelova, Trudy MCHTI im. Mendeleeva, vyp. 75 (1973) 147.

    Google Scholar 

  38. Yu. Ya. Maksimov, N. V. Polyakov andV. F. Sapranovich, Trudy MCHTI im. Mendeleeva, vyp. 83 (1974) 55.

    Google Scholar 

  39. E.Hauseler, Symp. Chem. Problems Connected Stab. Explos., Stockholm, (1967) 34.

  40. E. G. Janzen, J. Am. Chem. Soc., 87 (1965) 3531.

    Article  Google Scholar 

  41. R. N. Rogers, Anal. Chem., 39 (1967) 730.

    Article  Google Scholar 

  42. J. M. Rosen andJ. C. Dacons, Explosivstoffe, 16 (1968) 250.

    Google Scholar 

  43. J. C. Dacons, H. G. Adolph andM. J. Kamlet, J. Phys. Chem., 74 (1970) 3035.

    Article  Google Scholar 

  44. H. J. Pasman, Th. M. Groothuizen andC. M. Vermeulen, Explosivstoffe, 17 (1969) 151.

    Google Scholar 

  45. Yu. Ya. Maksimov, Zh. Fiz. Khim., 45 (1971) 793.

    Google Scholar 

  46. Yu. Ya. Maksimov, Zh. Fiz. Khim., 46 (1972) 1726.

    Google Scholar 

  47. N. V. Polyakov, V. F. Sapranovich andYu. Maksimov, Trudy MCHTI im. Mendeleeva, vyp., 83 (1974) 51.

    Google Scholar 

  48. Yu. Ya. Maksimov andL. T. Pavlik, Zh. Fiz. Khim., 49 (1975) 649.

    Google Scholar 

  49. E. K. Fields andS. Meyerson, J. Org. Chem., 33 (1968) 4487.

    Article  Google Scholar 

  50. G. Krien, Explosivstoffe, 13 (1965) 205.

    Google Scholar 

  51. J. W. Beckmann, J. S. Wilkes andR. R. Moguire, Thermochim. Acta, 19 (1977) 111.

    Article  Google Scholar 

  52. S. A. Shackelford, J. W. Beckmann andJ. S. Wilkes, J. Org. Chem., 42 (1977) 4201.

    Article  Google Scholar 

  53. R. N. Rogers, Thermochim. Acta, 11 (1975) 131.

    Article  Google Scholar 

  54. J. Harris, Thermochim. Acta, 14 (1976) 183.

    Article  Google Scholar 

  55. A. E. Simchen, Israel J. Technol., 7 (1969) 445.

    Google Scholar 

  56. M.Marcin, unpublished work, Chemko, StráŽske, 1971.

  57. G. P. Sharnin, B. I. Buzykin, V. V. Nurgatin andI. E. Moysak, Zh. Org. Khim., 3 (1966) 82.

    Google Scholar 

  58. S. Zeman, Thermochim. Acta, 31 (1979) 269.

    Article  Google Scholar 

  59. J. R. Holden andC. Dickinson, J. Phys. Chem., 73 (1969) 1203.

    Article  Google Scholar 

  60. J. R. Holden andC. Dickinson, J. Phys. Chem., 71 (1967) 1129.

    Article  Google Scholar 

  61. J. H. Bryden, Acta Cryst., Ser. B, 28 (1972) 1395.

    Google Scholar 

  62. A. G.Turovec and V. I.Danilova, Izv. Vysshykh Uchebn. Zavedent., Fizika, (1973) 68.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author is obliged to Mrs Klara Kováčová M. S. for her most generous help in processing the results of measurements on the Wang 2200 computer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeman, S. Possibilities of applying the Piloyan method of determination of decomposition activation energies in the differential thermal analysis of polynitroaromatic compounds and of their derivatives. Journal of Thermal Analysis 17, 19–29 (1979). https://doi.org/10.1007/BF02156593

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02156593

Keywords

Navigation