Skip to main content
Log in

Local second-order boundary methods for lattice Boltzmann models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A new way to implement solid obstacles in lattice Boltzmann models is presented. The unknown populations at the boundary nodes are derived from the locally known populations with the help of a second-order Chapman-Enskog expansion and Dirichlet boundary conditions with a given momentum. Steady flows near a flat wall, arbitrarily inclined with respect to the lattice links, are then obtained with a third-order error. In particular, Couette and Poiseuille flows are exactly recovered without the Knudsen layers produced for inclined walls by the bounce back condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet, Lattice gas hydrodynamics in two and three dimensiones,Complex Systems 1:649 (1987).

    Google Scholar 

  2. F. J. Higuera and J. Jimenez, Boltzmann approach to lattice gas simulations.Europhys. Lett. 9:663 (1989).

    Google Scholar 

  3. S. Succi, E. Foti, and F. Higuera, The lattice Boltzmann equation: A new tool for computational fluid dynamics,Physica D 47:219 (1991).

    Google Scholar 

  4. D. H. Rothman and S. Zaleski, Lattice-gas models of phase separation: Interfaces, phase transitions, and multiphase flow,Rev. Mod. Phys. 66:1417 (1994).

    Google Scholar 

  5. R. Benzi, S. Succi, and M. Vergasola, The lattice Boltzmann equation: Theory and applications,Phys. Rep. 222:145 (1992).

    Google Scholar 

  6. D. H. Rothman, Cellular-automaton fluids: A model for flow in porous media,Geophysics 53:509 (1988).

    Google Scholar 

  7. A. Cancelliere, C. Chang, E. Foti, D. H. Rothmans and S. Succi, The permeability of random medium: Comparison of simulations with theory,Phys. Fluids A 2:2085 (1990).

    Google Scholar 

  8. S. Chen, K. Diemer, G. D. Doolen, K. Eggert, C. Fu, S. Gutman, and B. J. Travis, Lattice gas automata for flow through porous media,Physica D 47:72 (1991).

    Google Scholar 

  9. B. Ferréol and D. Rothman, Lattice-Boltzmann simulations of flow through Fontainebleau sandstone,Transport Porous Media (1995).

  10. A. J. C. Ladd, M. E. Colvin, and D. Frenkel, Application of lattice-gas cellular automata to the Brownian motion of solids in suspensions,Phys. Rev. Lett. 60:975 (1988).

    Google Scholar 

  11. A. J. C. Ladd and D. Frenkel, Dissipative hydrodynamic interactions via lattice-gas cellular automata,Phys. Fluids A 2:1921 (1990).

    Google Scholar 

  12. A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation.J. Fluid Mech. 271:285 (1994).

    Google Scholar 

  13. A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical result,J. Fluid Mech. 271:311 (1994).

    Google Scholar 

  14. R. Cornubert, D. d'Humières, and D. Levermore, A Knudsen layer theory,Physica D 47:241 (1991).

    Google Scholar 

  15. R. Cornubert and D. d'Humières. Flow past a symmetric backfacing-step using lattice Boltzmann equation, unpublished.

  16. I. Ginzbourg and P. M. Adler, Boundary flow condition analysis for the three-dimensional lattice Bolzmann model.J. Phys. II France 4:191 (1994).

    Google Scholar 

  17. I. Ginzbourg, boundary conditions problems in lattice gas methods for single and multiple phases, Ph.D. thesis University of Paris VI (1994).

  18. D. P. Ziegler, Boundary conditions for lattice Boltzmann simultations,J. Stat. Phys. 71:1171 (1993).

    Google Scholar 

  19. D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius, A consistent hydrodynamic boundary condition for the lattice Boltzmann method,Phys. Fluids A 7:203 (1995).

    Google Scholar 

  20. P. A. Skordos, Initial and boundary conditions for the lattice Boltzmann method,Phys. Rev. E 48:4823 (1993).

    Google Scholar 

  21. C. Appert and D. d'Humières, Density profiles in a diphasic lattice gas model,Phys. Rev. E 51:4335 (1995).

    Google Scholar 

  22. F. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions,Europhys. Lett. 9:345 (1989).

    Google Scholar 

  23. R. Cornubert, D. d'Humières, and D. Levermore, A Knudsen layer theory for lattice gases, unpublished.

  24. I. Ginzbourg, L. Giraud, and D. d'Humières, Efficient lattice-Boltzmann calculations in porous media in preparation.

  25. H. Schlishting,Boundary Layer Theory (McGraw-Hill, New York, 1968).

    Google Scholar 

  26. D. W. Grunau, Lattice methods for modeling hydrodynamics, Ph.D. thesis, Colorado State University (1993).

  27. J. D. Sterling and S. Chen, Stability analysis of lattice Boltzmann methods,J. Comp. Phys., submitted.

  28. S. Chen, H. Chen, D. Martinez, and W. H. Matthaeus, Lattice Boltztmann model for simulation of magnetohydrodynamics,Phys. Rev. Lett. 67:3776 (1991).

    Google Scholar 

  29. H. Chen, S. Chen, and W. H. Matthaeus, Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method,Phys. Rev. A 45:R5339 (1992).

    Google Scholar 

  30. Y. H. Qian, D. d'Humières, and P. Lallemand, Lattice BGK models for Navier-Stokes equation,Europhys. Lett. 17:479 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginzbourg, I., d'Humières, D. Local second-order boundary methods for lattice Boltzmann models. J Stat Phys 84, 927–971 (1996). https://doi.org/10.1007/BF02174124

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02174124

Key Words

Navigation