Skip to main content
Log in

Seeing our way to drug design

  • Perspectives Part III. Hardware And Software
  • Published:
Perspectives in Drug Discovery and Design

Summary

Interactive molecular graphics plays an important role in every stage of the drug design process. The technology of molecular graphics has advanced considerably over the past 30 years, both in terms of hardware features for advanced rendering and computation, and in terms of software environments for rapid, flexible and extensible program development. This paper discusses the role of interactive computer graphics in rational drug design, from structure determination, computation and analysis, through prediction and design, to communication and presentation. The emphasis is on the new trends in the technology, and how they can be utilized to facilitate and improve the various stages of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Julius Caesar wrote these words some two millennia ago, after he had routed Pharnaces Ponticus at the first assault; in Plutarch's ‘Fall of the Roman Republic’, Viking Penguin Inc., New York, NY, 1972, pp. 291–292.

  2. Hodgson, J., Bio/Technology, 11 (1993) 36.

    Google Scholar 

  3. Leventhal, C., Sci. Am., 214 (1965) 42.

    Google Scholar 

  4. Pique, M., personal communication.

  5. O'Donnell, T.J. and Olson, A.J., Comput. Graphics, 15 (1981) 133.

    Google Scholar 

  6. Connolly, M.L. and Olson, A.J., Comput. Chem., 9 (1985) 1.

    Google Scholar 

  7. Perrin, T.E., Huang, C.C., Jarvis, L.E. and Langridge, R., J. Mol. Graphics, 6 (1988) 13.

    Google Scholar 

  8. Hubbard, R.E., In Fletterick, R. and Zoller, M. (Eds.) Computer Graphics and Molecular Modelling, Cold Spring Harbor Laboratory, 1986, pp. 9–12.

  9. Connolly, M.L., Ph.D. Thesis, University of California at Berkeley, CA, 1981.

    Google Scholar 

  10. Connolly, M.L., Science, 221 (1983) 709.

    Google Scholar 

  11. Connolly, M.L., J. Appl. Crystallogr., 16 (1983) 548.

    Google Scholar 

  12. Upson, C., Faulhauber Jr., T., Kamins, D., Laidlaw, D., Schlegel, D., Vroom, J., Gurwitz, R. and Van Dam, A., IEEE Comput. Graphics Appl., 9 (1989) 30.

    Google Scholar 

  13. Duncan, B.S., Pique, M. and Olson, A.J., In AVS for Molecular Modeling, Proceedings of 2nd Annual International AVS User Group Conference, Lake Buena Vista, 1993.

  14. Jones, T.A., J. Appl. Crystallogr., 11 (1978) 268.

    Google Scholar 

  15. Diamond, R., In Sayer, D. (Ed.) Computational Crystallography, Clarendon Press, Oxford, 1982, pp. 318–325.

    Google Scholar 

  16. Barry, C.D., In Sayer, D. (Ed.) Computational Crystallography, Clarendon Press, Oxford, 1982, pp. 274–285.

    Google Scholar 

  17. Wright, W.V., In Sayer, D. (Ed.) Computational Crystallography, Clarendon Press, Oxford, 1982, pp. 294–302.

    Google Scholar 

  18. Johnson, C.K., ORTEP: A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge National Laboratory Report ORNL-3794, 1970.

  19. Greer, J. and Bush, B.L., Proc. Natl. Acad. Sci. USA, 75 (1978) 303.

    Google Scholar 

  20. Williams, T.V., Ph.D. Thesis, University of North Carolina, NC, 1982.

    Google Scholar 

  21. Jones, T.A. and Thirup, S., EMBO J., 5 (1986) 819.

    Google Scholar 

  22. McRee, D.E., J. Mol. Graphics, 10 (1992) 44.

    Google Scholar 

  23. Goodsell, D.S., Mian, I.S. and Olson, A.J., J. Mol. Graphics, 7 (1989) 41.

    Google Scholar 

  24. Totsuka, T. and Levoy, M., In Mair, S.G. (Ed.) Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Addison-Wesley, Reading, MA, 1993, pp. 127–134.

    Google Scholar 

  25. Billeter, M., Engeli, M. and Wüthrich, K., J. Mol. Graphics, 3 (1985) 79.

    Google Scholar 

  26. Sanner, M., Widmer, A., Senn, H. and Braun, W., J. Comput.-Aided Mol. Design, 3 (1989) 195.

    Google Scholar 

  27. Forster, M., Jones, C. and Mulloy, B., J. Mol. Graphics, 7 (1989) 196.

    Google Scholar 

  28. Rayment, I., Rypniewski, W.R., Schmidt-Bäse, K., Smith, R., Tomchick, D.R., Benning, M.M., Winkelmann, D.A., Wessenberg, G. and Holden, H.M., Science, 261 (1993) 50.

    PubMed  Google Scholar 

  29. Rayment, I., Holden, H.M., Whittaker, M., Yohn, C.B., Lorenz, M., Holmes, K.C. and Milligan, R.A., Science, 261 (1993) 58.

    PubMed  Google Scholar 

  30. Duncan, B.S. and Olson, A.J., Biopolymers, 33 (1993) 219.

    Google Scholar 

  31. Duncan, B.S. and Olson, A.J., Biopolymers, 33 (1993) 231.

    Google Scholar 

  32. Perutz, M., In Protein Structure: New Approaches to Disease and Therapy, Freeman, New York, NY, 1992, pp. 139–163.

    Google Scholar 

  33. Sanner, M., Ph.D. Thesis, Université de Haute-Alsace, Faculte des Sciences et Techniques.

  34. Alard, P. and Woldak, S.J., J. Comput. Chem., 12 (1991) 918.

    Google Scholar 

  35. Ho, C.M.W. and Marshall, G.R., J. Comput.-Aided Mol. Design, 4 (1990) 337.

    Google Scholar 

  36. Widgerson, E. and Mayer, A.Y., Comput. Chem., 12 (1988) 237.

    Google Scholar 

  37. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  38. Pickett, S.D. and Sternberg, M.J., J. Mol. Biol., 231 (1993) 825.

    Google Scholar 

  39. Urry, D.W., Gowda, D.C., Parker, T.M., Luan, C.H., Reid, M.C., Harris, C.M., Pattanaik, A. and Harris, R.D., Biopolymers, 32 (1992) 1243.

    Google Scholar 

  40. Casari, G. and Sippl, M.J., J. Mol. Biol., 224 (1992) 725.

    Google Scholar 

  41. Lesser, G.J. and Rose, G.D., Protein Struct. Funct. Genet., 8 (1990) 6.

    Google Scholar 

  42. Kellogg, G.E., Semus, S.F. and Abraham, D.J., J. Comput.-Aided Mol. Design, 5 (1991) 545.

    Google Scholar 

  43. Kuhn, L.A., Siani, M.A., Pique, M.E., Fisher, C.L., Getzoff, E.D. and Tainer, J.A., J. Mol. Biol., 228 (1992) 13.

    Google Scholar 

  44. Sharp, K.A., Nicholls, A., Fine, R.F. and Honig, B., Science, 252 (1991) 106.

    Google Scholar 

  45. Nicholls, A., Sharp, K.A. and Honig, B., Protein Struct. Funct. Genet., 11 (1991) 281.

    Google Scholar 

  46. Teschner, M., Henn, C., Brickmann, J., Vollhard, H. and Reiling, S., J. Mol. Graphics, submitted for publication.

  47. Nilsson, O., J. Mol. Graphics, 8 (1990) 192.

    Google Scholar 

  48. Van Drie, J.H., Weininger, D. and Martin, Y.C., J. Comput.-Aided Mol. Design, 3 (1989) 225.

    Google Scholar 

  49. Mitchell, E.M., Allen, F.H. and Kennard, O., In Bowden, D., Mitchell, E.M. and Horwood, E.M. (Eds.) The Cambridge Structural Database System, Cambridge Press, Chichester, 1993, pp. 63–80.

    Google Scholar 

  50. Meng, E.C., Shoichet, B.K. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 505.

    Google Scholar 

  51. Desjarlais, R.E., Seibel, G.L., Kuntz, I.D., Furth, P.S., Alvarez, J.C., Ortiz de Montellano, P.R., DeCamp, D.L., Babe, L.M. and Craik, C.S., Proc. Natl. Acad. Sci. USA, 87 (1990) 6644.

    Google Scholar 

  52. Wlodawer, A.M., Miller, M., Jaskolski, M., Sathyanarayana, B.K., Baldwin, E., Weber, I.T., Selk, L.M., Clawson, L., Schneider, J. and Kent, S.B.H., Science, 245 (1989) 616.

    Google Scholar 

  53. Moon, J.B. and Howe, W.J., Protein Struct. Funct. Genet., 11 (1991) 314.

    Google Scholar 

  54. Goodsell, D.S. and Olson, A.J., Protein Struct. Funct. Genet., 8 (1990) 195.

    Google Scholar 

  55. Morris, G.M., personal communication. The latest version of AUTODOCK, written in C, has a command-line interface that allows the program to be invoked as an ‘energy server’. This allows alternative sampling procedures to be used, such as genetic algorithms (GA) and evolutionary programming (EP) methods.

  56. Von Itzstein, M., Wu, W.-Y., Kok, G.B., Pegg, M.S., Dyason, J.C., Jin, B., Van Phan, T., Smythe, M.L., White, H.F., Oliver, S.W., Colman, P.M., Varghese, J.N., Ryan, D.M., Woods, J.M., Bethell, R.C., Hotham, V.J., Cameron, J.M. and Penn, C.R., Nature, 363 (1993) 418.

    Google Scholar 

  57. Carson, M., J. Appl. Crystallogr., 24 (1991) 958.

    Google Scholar 

  58. Shah, A., personal communication. Shah has developed a filter module to read the output of Carson's RIBBONS program into AVS.

  59. Kraulis, P.J., J. Appl. Crystallogr., 24 (1991) 946.

    Google Scholar 

  60. Goodsell, D.S. and Olson, A.J., J. Mol. Graphics, 10 (1992) 235.

    Google Scholar 

  61. Goodsell, D.S. and Olson, A.J., Pixel, 2 (1991) 36.

    Google Scholar 

  62. Hilmer, R.M., J. Mol. Graphics, 7 (1989) 212.

    Google Scholar 

  63. Larsen, T.L., ACM SIGGRAPH Video Rev., 91 (1993) 14.

    Google Scholar 

  64. Larsen, T.L., Computer Graphics Visual Proceedings, Annual Conference Series, ACM SIGGRAPH, Addison-Wesley, Reading, MA, 1993, p. 94.

    Google Scholar 

  65. Freedman, D., Science, 261 (1993) 844.

    Google Scholar 

  66. Brooks Jr., J.P., Ouh-Young, M., Batter, J.J. and Kilpatrick, P.J., Comput. Graphics, 24 (1990) 177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, A.J., Morris, G.M. Seeing our way to drug design. Perspectives in Drug Discovery and Design 1, 329–344 (1993). https://doi.org/10.1007/BF02174533

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02174533

Key words

Navigation