Skip to main content
Log in

An energy-transport model for semiconductors derived from the Boltzmann equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An energy-transport model is rigorously derived from the Boltzmann transport equation of semiconductors under the hypothesis that the energy gain or loss of the electrons by the phonon collisions is weak. Retaining at leading order electron-electron collisions and elastic collisions (i.e., impurity scattering and the “elastic part” of phonon collisions), a rigorous diffusion limit of the Boltzmann equation can be carried over, which leads to a set of diffusion equations for the electron density and temperature. The derivation is given in both the degenerate and nondegenerate cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Anile and S. Pennisi, Thermodynamic derivation of the hydrodynamical model for charge transport in semiconductors,Phys. Rev. B 46:13186–13193 (1992).

    Google Scholar 

  2. A. M. Anile and O. Muscato, An improved hydrodynamic model for carrier transport in semiconductors, Preprint.

  3. N. W. Ashcroft and N. D. Mermin,Solid-State Physics (Saunders College, 1976).

  4. E. M. Azoff, Generalized energy-momentum conservation equations in the relaxation time approximation,Solid-State Electron. 30:913–923 (1984).

    Google Scholar 

  5. G. Baccarani and M. R. Wordeman, An investigation of steady-state velocity overshoot in silicon,Solid-State Electron. 28:407–416 (1985).

    Google Scholar 

  6. S. Genieys, Diffusion approximation for a drift-diffusion model of semiconductors involving an electron temperature, In preparation.

  7. K. Bloekjaer, Transport equations in two-valley semiconductors,IEEE Trans. Electron Devices ED-17:38–47 (1970).

    Google Scholar 

  8. S. I. Braginskii, Transport processes in a plasma,Rev. Plasma Phys. 1 (1965).

  9. P. N. Butcher, Basic electron-transport theory, Report IAEA-SMR-10/4.

  10. E. M. Conwell,High-Field Transport in Semiconductor (Solid State Physics, Vol. g) (Academic Press, New York, 1967).

    Google Scholar 

  11. P. Degond and B. Lucquin-Desreux, The asymptotics of collision operators for two species of particles of disparate masses,Math. Models Meth. Appl. Sci., to appear.

  12. P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate-mass binary gases,Transport Theory Stat. Phys., submitted.

  13. P. Dmitruk, A. Saul, and L. Reyna, High electric field approximation to charge transport in semiconductor devices,Appl. Math. Lett. 5:99–102 (1992).

    Google Scholar 

  14. A. Gnudi, D. Ventura, G. Baccarani, and F. Odeh, Two-dimensional MOSFET simulation by means of a multidimensional spherical harmonic expansion of the Boltzmann transport equation.Solid State Electron. 36:575–581 (1993).

    Google Scholar 

  15. F. Golse and F. Poupaud, Limite fluide des equations de Boltzmann des semiconducteurs pour une statistique de Fermi-Dirac,Asympt. Anal. 6:135–160 (1992).

    Google Scholar 

  16. H. G. Grad, On the kinetic theory of rarefied gases,Commun. Pure Appl. Math. 2:331–407 (1949).

    Google Scholar 

  17. H. G. Grad, Principles of the kinetic theory of gases, inHandbuch der Physik, Vol. 12 (1958), pp. 205–294.

  18. W. Hänsch and M. Miura-Mattausch, The hot-electron problem in small semiconductor devices,J. Appl. Phys. 60:650–656 (1986).

    Google Scholar 

  19. W. Jones and N. H. March,Theoretical Solid-State Physics, Vol. 2, Nonequilibrium and Disorder (Dover, New York, 1973).

    Google Scholar 

  20. D. Levermore, Moment closure hierarchies for kinetic theories, Preprint.

  21. P. A. Markowich and C. Schmeiser, The drift-diffusion limit for electron-photon interaction in semiconductors, Preprint.

  22. P. A. Markowich, F. Poupaud, and C. Schmeiser, Diffusion approximation for nonlinear electron-photon collision mechanisms, Preprint.

  23. F. Poupaud, Diffusion approximation of the linear semiconductor equation: Analysis of boundary layers,Asymp. Anal. 4:293–317 (1991).

    Google Scholar 

  24. F. Poupaud, Runaway phenomena and fluid approximation under high fields in semiconductor kinetic theory,ZAMM 72:359–372 (1992).

    Google Scholar 

  25. L. Reggiani, ed.,Hot Electron Transport in Semiconductors (Springer, Berlin, 1985).

    Google Scholar 

  26. D. L. Rode, Low-field electron transport,In Semiconductors and Semimetals, Vol. 10 (Academic Press, New York, 1995), pp. 1–52.

    Google Scholar 

  27. M. Rudan, M. C. Vecchi, and D. Ventura, The hydrodynamic model in semiconductors—Coefficient calculation for the conduction band of silicon, inPitman Res. Notes, to appear.

  28. R. Stratton, Diffusion of hot and cold electrons in semiconductor barriers,Phys. Rev. 126:2002–2014 (1962).

    Google Scholar 

  29. W. V. Van Roosebroeck, Theory of flow of electrons and holes in germanium and other semiconductors,Bell Syst. Tech. J. 29:560–607 (1950).

    Google Scholar 

  30. M. C. Vecchi and L. G. Reyna, Generalized energy transport models for semiconductor device simulation,Solid State Electron. 37:1705–1716 (1994).

    Google Scholar 

  31. D. Ventura, A. Gnudi, G. Baccarani, and F. Odeh, Multidimensional spherical harmonics expansion of Boltzmann equation for transport in semiconductors,Appl. Math. Lett. 5:85–90 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Abdallah, N., Degond, P. & Genieys, S. An energy-transport model for semiconductors derived from the Boltzmann equation. J Stat Phys 84, 205–231 (1996). https://doi.org/10.1007/BF02179583

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179583

Key Words

Navigation