Skip to main content
Log in

Coulomb systems seen as critical systems: Ideal conductor boundaries

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

When a classical Coulomb system has macroscopic conducting behavior, its grand potential has universal finite-size corrections similar to the ones which occur in the free energy of a simple critical system: the massless Gaussian field. Here, the Coulomb system is assumed to be confined, by walls made of an ideal conductor material; this choice corresponds to simple (Dirichlet) boundary conditions for the Gaussian field. For ad-dimensional (d≥2) Coulomb system confined in a slab of thicknessW, the grand potential (in units ofk B T) per unit area has the universal term Γ(d/2)ζ(d)/2dπd/2Wd−1. For a two-dimensional Coulomb system confined, in a disk of radiusR, the grand potential (in units ofk B T) has the universal term (1/6) lnR. These results, of general validity, are checked on two-dimensional solvable models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Forrester,J. Stat. Phys. 63:491 (1991).

    Google Scholar 

  2. B. Jancovici, G. Manificat, and C. Pisani,J. Stat. Phys. 76:307 (1994).

    Google Scholar 

  3. H.W. J. Blöte, J. L. Cardy, and M. P. Nightingale,Phys. Rev. Lett. 56:742 (1986).

    Google Scholar 

  4. I. Affleck,Phys. Rev. Lett. 56:746 (1986).

    Google Scholar 

  5. J. L. Cardy and I. Peschel,Nucl. Phys. B 300 [FS22]:377 (1988).

    Google Scholar 

  6. J. L. Cardy, InFields, Strings and Critical Phenomena, Les Houches, 1988, E. Brézin and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1990).

    Google Scholar 

  7. B. Jancovici,J. Stat. Phys. 80:445 (1995).

    Google Scholar 

  8. B. Jancovici,J. Phys. (Paris)47:389 (1986).

    Google Scholar 

  9. M. Gaudin,J. Phys. (Paris)46:1027 (1985).

    Google Scholar 

  10. F. Cornu and B. Jancovici,J. Chem. Phys. 90:2444 (1989).

    Google Scholar 

  11. P. J. Forrester,J. Chem. Phys. 95:4545 (1990).

    Google Scholar 

  12. B. Jancovici and G. Manificat,J. Stat. Phys. 68:1089 (1992).

    Google Scholar 

  13. A. Alastuey and B. Jancovici,J. Phys. (France)42:1 (1981).

    Google Scholar 

  14. B. Jancovici,Phys. Rev. Lett. 46:386 (1981).

    Google Scholar 

  15. P. J. Forrester,J. Phys. A 18:1419 (1985).

    Google Scholar 

  16. P. J. Forrester and E. R. Smith,J. Phys. A 15:3861 (1982).

    Google Scholar 

  17. V. Russier, J. P. Badiali, and M. L. Rosinberg,J. Phys. C 18:707 (1985).

    Google Scholar 

  18. O. Alvarez,Nucl. Phys. B 216:125 (1983).

    Google Scholar 

  19. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Laboratoire Associé au Centre National de la Recherche Scientifique-URA 63.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jancovici, B., Téllez, G. Coulomb systems seen as critical systems: Ideal conductor boundaries. J Stat Phys 82, 609–632 (1996). https://doi.org/10.1007/BF02179788

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179788

Key Words

Navigation