Skip to main content
Log in

Renormalizing rectangles and other topics in random matrix theory

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider random Hermitian matrices made of complex or realM×N rectangular blocks, where the blocks are drawn from various ensembles. These matrices haveN pairs of opposite real nonvanishing eigenvalues, as well asM−N zero eigenvalues (forM>N). These zero eigenvalues are “kinematical” in the sense that they are independent of randomness. We study the eigenvalue distribution of these matrices to leading order in the large-N, M limit in which the “rectangularity”r=M/N is held fixed. We apply a variety of methods in our study. We study Gaussian ensembles by a simple diagrammatic method, by the Dyson gas approach, and by a generalization of the Kazakov method. These methods make use of the invariance of such ensembles under the action of symmetry groups. The more complicated Wigner ensemble, which does not enjoy such symmetry properties, is studied by large-N renormalization techniques. In addition to the kinematical δ-function spike in the eigenvalue density which corresponds to zero eigenvalues, we find for both types of ensembles that if |r−1| is held fixed asN→∞, theN nonzero eigenvalues give rise to two separated lobes that are located symmetrically with respect to the origin. This separation arises because the nonzero eigenvalues are repelled macroscopically from the origin. Finally, we study the oscillatory behavior of the eigenvalue distribution near the endpoints of the lobes, a behavior governed by Airy functions. Asr→1 the lobes come closer, and the Airy oscillatory behavior near the endpoints that are close to zero breaks down. We interpret this breakdown as a signal thatr→1 drives a crossover to the oscillation governed by Bessel functions near the origin for matrices made of square blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. M. Verbaarschot,Nucl. Phys. B 426:559 (1994).

    Google Scholar 

  2. J. Ambjørn, Quantization of geometry, inLes Houches 1990, J. Dalibard et al., eds. (North-Holland, Amsterdam, 1992), Section 4.3 and references therein.

    Google Scholar 

  3. J. Ambjørn, J. Jurkiewicz, and Yu. M. Makeenko,Phys. Lett. B 251:517 (1990).

    Google Scholar 

  4. K. Slevin and T. Nagao,Phys. Rev. Lett. 70:635 (1993);Phys. Rev. B 50:2380 (1994); T. Nagao and K. Slevin,J. Math. Phys. 34:2075, 2317 (1993).

    Google Scholar 

  5. T. Nagao and P. J. Forrester,Nucl. Phys. B 435 (FS):401 (1995).

    Google Scholar 

  6. A. V. Andreev, B. D. Simons, and N. Taniguchi,Nucl. Phys. B 432:485 (1994).

    Google Scholar 

  7. E. Brezin, S. Hikami, and A. Zee,Nucl. Phys. B 464:411 (1996).

    Google Scholar 

  8. S. Nishigaki, Preprint, hep-th/9606099.

  9. J. J. M. Verbaarschot and I. Zahed,Phys. Rev. Lett. 70:3852 (1993).

    Google Scholar 

  10. J. Jurkiewicz, M. A. Novak, and I. Zahed, preprint hep-ph/9603308; M. A. Novak, G. Papp and I. Zahed, preprint hep-ph/9603348.

  11. S. Hikami and A. Zee,Nucl. Phys. B 446:337 (1995).

    Google Scholar 

  12. S. Hikami, M. Shirai, and F. Wegner,Nucl. Phys. B 408:415 (1993).

    Google Scholar 

  13. C. B. Hanna, D. P. Arovas, K. Mullen, and S. M. Girvin, cond-mat 9412102.

  14. E. Brézin and A. Zee,Phys. Rev. E 49:2588 (1994).

    Google Scholar 

  15. E. Brézin and A. Zee,C. R. Acad. Sci. Paris 317:735 (1993).

    Google Scholar 

  16. E. Brézin and J. Zinn-Justin,Phys. Lett. B 288:54 (1992); S. Higuchi, C. Itoh, S. Nishigaki, and N. Sakai,Phys. Lett. B 318:63 (1993);Nucl. Phys. B 434:283 (1995); Erratum,Nucl. Phys. B 441:405.

    Google Scholar 

  17. J. D'Anna and A. Zee,Phys. Rev. E 53:1399 (1996).

    Google Scholar 

  18. A. Anderson, R. C. Myers, and V. Periwal,Phys. Lett. B 254:89 (1991);Nucl. Phys. B 360:463 (1991); R. C. Myers and V. Periwal,Nucl. Phys. B 390:716 (1991).

    Google Scholar 

  19. V. A. Kazakov,Nucl. Phys. B 354:614 (1991).

    Google Scholar 

  20. E. P. Wigner, InCanadian Mathematical Congress Proceedings (University of Toronto Press, Toronto, 1957), p. 174 [reprinted in C. E. Porter,Statistical Theories of Spectra: Fluctuation (Academic Press, New York, 1965)]; see also M. L. Mehta,Random Matrices (Academic Press, New York, 1991).

    Google Scholar 

  21. E. Brézin, C. Itzykson, G. Parisi, and J.-B. Zuber,Commun. Math. Phys. 59:35 (1978).

    Google Scholar 

  22. C. Itzykson and J.-B. Zuber,J. Math. Phys. 21:411 (1980).

    Google Scholar 

  23. A. Zee,Nucl. Phys. B 474:726 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feinberg, J., Zee, A. Renormalizing rectangles and other topics in random matrix theory. J Stat Phys 87, 473–504 (1997). https://doi.org/10.1007/BF02181233

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02181233

Key Words

Navigation