Skip to main content
Log in

The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the flow of a gas in a channel whose walls are kept at fixed (different) temperatures. There is a constant external force parallel to the boundaries which may themselves also be moving. The system is described by the stationary Boltzmann equation to which are added Maxwellian boundary conditions with unit accommodation coefficient. We prove that when the temperature gap, the relative velocity of the planes, and the force are all sufficiently small, there is a solution which converges, in the hydrodynamic limit, to a local Maxwellian with parameters given by the stationary solution of the corresponding compressible Navier-Stokes equations with no-slip voundary conditions. Corrections to this Maxwellian are obtained in powers of the Knudsen number with a controlled remainder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Onsager, Reciprocal relations in irreversible processes,Phys. Rev. 37:405–426 (1931);38, 2265–2279 (1932); L. Onsager and S. Machlup, Fluctuations and irreversible processes91:1505–1512, 1512–1515 (1953).

    Google Scholar 

  2. D. D. Joseph,Stability of Fluid Motions (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  3. H. Spohn,Large Scale Dynamics of Interacting Particles (Springer-Verlag, New York, 1991).

    Google Scholar 

  4. A. De Masi and E. Presutti,Lecture Notes in Mathematics, No. 1501 (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  5. C. Cercignani,The Boltzmann Equation and Its Applications (Springer-Verlag, New York, 1988).

    Google Scholar 

  6. T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation,Commun. Math. Phys. 61:119–148 (1978).

    Google Scholar 

  7. R. E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation,Commun. Pure Appl. Math. 33:651–666 (1980).

    Google Scholar 

  8. S. Ukai, The Euler limit and initial layer of the nonlinear Boltzmann equation,Hokkaido Math. J. 12:303–324 (1983).

    Google Scholar 

  9. C. Bardos, R. E. Caflisch, and B. Nicolaenko,Thermal Layer Solutions of the Boltzmann Equation, Random Fields: Rigorous Results in Statistical Physics. Koszeg 1984, J. Fritz, A. Jaffe, and D. Szasz, eds. (Birkhauser, Boston, 1985).

    Google Scholar 

  10. R. Esposito, J. L. Lebowitz, and R. Marra, Hydrodynamic limit of the stationary Boltzmann equation in a slab,Commun. Math. Phys. 160:49–80 (1994).

    Google Scholar 

  11. R. Esposito, J. L. Lebowitz, and R. Marra, in preparation.

  12. E. S. Asimolov, N. K. Makashev, and V. I. Nosik, Heat transfer between plane parallel plates in a gas of Maxwellian molecules,Sov. Phys. Dokl. 24:892–894 (1979).

    Google Scholar 

  13. A. Santos, J. J. Brey, C. S. Kim, and J. W. Dufty, Velocity distribution for a gas with steady heat flow,Phys. Rev. A 39:320–327 (1989).

    Google Scholar 

  14. A. Santos, J. J. Brey, and J. W. Dufty, An exact solution to the inhomogeneous nonlinear Boltzmann equation, Preprint (1993).

  15. N. B. Maslova,Non Linear Evolution Equations, Kinetic Approach (World Scientific, Singapore, 1993).

    Google Scholar 

  16. A. Grad, Asymptotic theory of the Boltzmann equation,Phys. Fluids 6:147–181 (1963); Asymptotic theory of the Boltzmann equation II, inRarefied Gas Dynamics II (Paris, 1962), pp. 26–59.

    Google Scholar 

  17. A. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann operator,Proc. Symp. Appl. Math. XVII:154–183 (1965).

    Google Scholar 

  18. L. Arkeryd, On the strongL 1 trend to equilibrium for the Boltzmann equation,Studies Appl. Math. 87:283–288 (1992).

    Google Scholar 

  19. P. L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications,Cahiers de Mathématique de la Décision, No. 9301, CEREMADE (1993).

  20. A. De Masi, R. Esposito, and J. L. Lebowitz, Incompressible Navier-Stokes and Euler limits of the Boltzmann equation,Commun. Pure Appl. Math. 42:1189–1214 (1989).

    Google Scholar 

  21. R. Esposito, J. L. Lebowitz, and R. Mara, Navier-Stokes limit of the Boltzmann equation, inStochastic Processes, Geometry and Physics (World Scientific, Singapore, to appear).

  22. F. Golse, B. Perthame, and C. Sulem, On a boundary layer problem for the nonlinear Boltzmann equation,Arch. Rat. Mech. 104:81–96 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, R., Lebowitz, J.L. & Marra, R. The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation. J Stat Phys 78, 389–412 (1995). https://doi.org/10.1007/BF02183355

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183355

Key Words

Navigation