Skip to main content
Log in

A scaling theory of bifurcations in the symmetric weak-noise escape problem

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider two-dimensional overdamped double-well systems perturbed by white noise. In the weak-noise limit the most probable fluctuational path leading from either point attractor to the separatrix (the most probable escape path, or MPEP) must terminate on the saddle between the two wells. However, as the parameters of a symmetric double-well system are varied, a unique MPEP may bifurcate into two equally likely MPEPs. At the bifurcation point in parameter space, the activation kinetics of the system become non-Arrhenius. We quantify the non-Arrhenius behavior of a system at the bifurcation point, by using the Maslov-WKB method to construct an approximation to the quasistationary probability distribution of the system that is valid in a boundary layer near the separatrix. The approximation is a formal asymptotic solution of the Smoluchowski equation. Our construction relies on a new scaling theory, which yields “critical exponents” describing weak-noise behavior at the bifurcation point, near the saddle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, eds.,Handbook of Mathematical Functions (Dover, New York, 1965).

    Google Scholar 

  2. V. I. Arnol'd, Critical points of smooth functions and their normal forms,Russ. Math. Surv. 30(5):1–75 (1975).

    Google Scholar 

  3. A. Auerbach and S. Kivelson, The path decomposition and multidimensional tunneling,Nucl. Phys. B 257[FS 14]:799–858 (1985).

    Google Scholar 

  4. M. V. Berry, Waves and Thom's theorem,Adv. Phys. 25:1–26 (1976).

    Google Scholar 

  5. M. V. Berry and N. L. Balazs, Evolution of semiclassical quantum states in phase space,J. Phys. A 12:625–642 (1979).

    Google Scholar 

  6. A. J. Bray and A. J. McKane, Instanton calculation of the escape rate for activation over a potential barrier driven by colored noise,Phys. Rev. Lett. 62:493–496 (1989).

    Google Scholar 

  7. B. Carmeli, V. Mujica, and A. Nitzan, Dynamics of multidimensional barrier crossing in the overdamped limit,Ber. Bunsen ges. 95:319–326 (1991).

    Google Scholar 

  8. B. Caroli, C. Caroli, B. Roulet, and J.-F. Gouyet, A WKB treatment of diffusion in a multidimensional bistable potential,J. Stat. Phys. 22:515–536 (1980).

    Google Scholar 

  9. M. V. Day, Recent progress on the small parameter exit problem,Stochastics 20:121–150 (1987).

    Google Scholar 

  10. J. J. Duistermaat, Oscillatory integrals, Lagrange immersions, and unfolding of singularities,Commun. Pure Appl. Math. 27:207–281 (1974).

    Google Scholar 

  11. M. I. Dykman, P. V. E. McClintock, V. N. Smelyanskiy, N. D. Stein, and N. G. Stocks, Optimal paths and the prehistory problem for large fluctuations in noise-driven systems,Phys. Rev. Lett. 68:2718–2721 (1992).

    Google Scholar 

  12. M. I. Dykman, M. M. Millonas, and V. N. Smelyanskiy, Observable and hidden singular features of large fluctuations in nonequilibrium systems,Phys. Lett. A 195:53–58 (1994).

    Google Scholar 

  13. J.-P. Eckmann and R. Sénéor, The Maslov-WKB method for the (an-)harmonic oscillator,Arch. Rat. Mech. Anal. 61:153–173 (1976).

    Google Scholar 

  14. M. I. Freidlin and A. D. WentzellRandom Perturbations of Dynamical Systems (Springer-Verlag, New York, 1984).

    Google Scholar 

  15. S. Glasstone, K. J. Laidler, and H. Eyring,The Theory of Rate Processes (McGraw-Hill, New York, 1941).

    Google Scholar 

  16. R. Graham, Macroscopic potentials, bifurcations and noise in dissipative systems, inTheory of Continuous Fokker-Planck Systems, F. Moss and P. V. E. McClintock, eds. (Cambridge University Press, Cambridge, 1989), Chapter 7, pp. 225–278.

    Google Scholar 

  17. M. C. Gutzwiller, Periodic orbits and classical quantization conditions,J. Math. Phys. 12:343–358 (1971).

    Google Scholar 

  18. M. C. Gutzwiller,Chaos in Classical and Quantum Mechanics (Springer-Verlag, Berlin, 1990).

    Google Scholar 

  19. H. R. Jauslin, Nondifferentiable potentials for nonequilibrium steady states,Physica A 144:179–191 (1987).

    Google Scholar 

  20. J. B. Keller, Corrected Bohr-Sommerfeld quantum conditions for non-separable systems,Ann. Phys. 4:180–188 (1958).

    Google Scholar 

  21. M. M. Kłosek-Dygas, B. M. Hoffman, B. J. Matkowsky, A. Nitzan, M. A. Ratner, and Z. Schuss, Diffusion theory of multidimensional activated rate processes: The role of anisotropy.J. Chem. Phys. 90:1141–1148 (1989).

    Google Scholar 

  22. H. A. Kramers, Brownian motion on a field of force and the diffusion model of chemical reactions,Physica 7:284–304 (1940).

    Google Scholar 

  23. R. Landauer, Motion out of noisy states,J. Stat. Phys. 53:233–248 (1988).

    Google Scholar 

  24. J. S. Langer, Statistical theory of the decay of metastable states,Ann. Phys. 54:258–275 (1969).

    Google Scholar 

  25. R. G. Littlejohn, The Van Vleck formula, Maslov theory, and phase space geometry,J. Stat. Phys. 68:7–50 (1992).

    Google Scholar 

  26. D. Ludwig, Persistence of dynamical systems under random perturbations,SIAM Rev. 17:605–640 (1975).

    Google Scholar 

  27. S.-K. Ma,Modern Theory of Critical Phenomena (Benjamin, Reading, Massachusetts, 1976).

    Google Scholar 

  28. R. S. Maier and D. L. Stein, The effect of focusing and caustics on exit phenomena in systems lacking detailed balance,Phys. Rev. Lett. 71:1783–1786 (1993).

    Google Scholar 

  29. R. S. Maier and D. L. Stein, The escape problem for irreversible systems,Phys. Rev. E 48:931–938 (1993).

    Google Scholar 

  30. R. S. Maier and D. L. Stein, Limiting exit location distributions in the stochastic exit problem,SIAM J. Appl. Math., provisionally accepted.

  31. M. Mangel, Barrier transitions driven by fluctuations with applications to evolution and ecology,Theoret. Popul. Biol. 45:16–40 (1994).

    Google Scholar 

  32. V. P. Maslov and M. V. Fedoriuk,Semi-Classical Approximation in Quantum Mechanics (Reidel, Dordrecht, 1981).

    Google Scholar 

  33. T. Naeh, M. M. Kłosek, B. J. Matkowsky, and Z. Schuss, A direct approach to the exit problem,SIAM J. Appl. Math. 50:595–627 (1990).

    Google Scholar 

  34. L. Onsager and S. Machlup, Fluctuations and irreversible processes,Phys. Rev. 91:1505–1512 (1953).

    Google Scholar 

  35. R. B. Paris, The asymptotic behaviour of Pearcey's integral for complex variables,Proc. R. Soc. Lond. A 432:391–426 (1991).

    Google Scholar 

  36. L. S. Schulman,Techniques and Applications of Path Integrations (Wiley, New York, 1981).

    Google Scholar 

  37. M. A. Shayman, A geometric view of the matrix Riccati equation, inThe Riccati Equation, S. Bittanti, A. J. Laub, and J. C. Willems, eds. (Springer-Verlag, Berlin 1991), pp. 89–112.

    Google Scholar 

  38. P. Talkner, Mean first passage times and the lifetime of a metastable state.Z. Phys. B 68:201–207 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, R.S., Stein, D.L. A scaling theory of bifurcations in the symmetric weak-noise escape problem. J Stat Phys 83, 291–357 (1996). https://doi.org/10.1007/BF02183736

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183736

Key Words

Navigation