Skip to main content
Log in

Monte carlo study of the interacting self-avoiding walk model in three dimensions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider self-avoiding walks on the simple cubic lattice in which neighboring pairs of vertices of the walk (not connected by an edge) have an associated pair-wise additive energy. If the associated force is attractive, then the walk can collapse from a coil to a compact ball. We describe two Monte Carlo algorithms which we used to investigate this collapse process, and the properties of the walk as a function of the energy or temperature. We report results about the thermodynamic and configurational properties of the walks and estimate the location of the collapse transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Torrie and J. P. Valleau,J. Comput. Phys. 23:187 (1977).

    Article  ADS  Google Scholar 

  2. C. J. Geyer and E. A. Thompson, Preprint, University of Minnesota (1994).

  3. S. T. Sun, I. Nishio, G. Swislow, and T. Tanaka,J. Chem. Phys. 73:5971 (1980).

    Article  ADS  Google Scholar 

  4. I. H. Park, J. H. Kim, and T. Chang,Macromolecules 25:7300 (1992).

    Article  ADS  Google Scholar 

  5. S. F. Sun,J. Chem. Phys. 93:7508 (1990).

    Article  ADS  Google Scholar 

  6. B. Nienhuis,J. Stat. Phys. 34:731 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. A. Coniglio, N. Jan, I. Majid, and H. E. Stanley,Phys. Rev. B 35:3617 (1987); B. Duplantier and H. Saleur,Phys. Rev. Lett. 59:539 (1987); F. Seno and A. L. Stella,J. Phys. (Paris)49: 739 (1988).

    Article  ADS  Google Scholar 

  8. P. G. de Gennes,J. Phys. Lett. (Paris)36:L55 (1975).

    Article  ADS  Google Scholar 

  9. P. G. de Gennes,J. Phys. Lett. (Paris)39:L299 (1978).

    Article  Google Scholar 

  10. B. Duplantier,Europhys. Lett. 1:491 (1986;J. Chem. Phys. 86:4233 (1987).

    Article  ADS  Google Scholar 

  11. A. L. Kholodenko and K. F. Freed,J. Chem. Phys. 80:900 (1984);J. Phys. A 17:L191 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Maritan, F. Seno, and A. L. Stella,Physica A 156:679 (1989).

    Article  ADS  Google Scholar 

  13. H. Saleur,J. Stat. Phys. 45:419 (1986).

    Article  ADS  Google Scholar 

  14. R. Finsy, M. Janssens, and A. Bellemans,J. Phys. A 8:L106 (1975).

    Article  ADS  Google Scholar 

  15. D. C. Rapaport,J. Phys. A 9:1521 (1976).

    Article  ADS  Google Scholar 

  16. T. Ishinabe,J. Phys. A 20:6435 (1985).

    Article  ADS  Google Scholar 

  17. V. Privman,J. Phys. A 19:3287 (1987).

    Article  ADS  Google Scholar 

  18. V. Privman and D. A. Kurtze,Macromolecules 19:2377 (1986).

    Article  ADS  Google Scholar 

  19. J. Mazur and F. L. McCrackin,J. Chem. Phys. 49:648 (1968).

    Article  ADS  Google Scholar 

  20. K. Kremer, A. Baumgartner, and K. Binder,J. Phys. A 15:2879 (1981).

    Article  ADS  Google Scholar 

  21. I. Webman, J. L. Lebowitz, and M. H. Kalos,Macromolecules 14:1495 (1981).

    Article  ADS  Google Scholar 

  22. H. Meirovitch and H. A. Lim,J. Chem. Phys. 92:5144 (1990).

    Article  ADS  Google Scholar 

  23. J. M. Hammersley and D. C. Handscomb,Monte Carlo Methods (Methuen, London, 1964).

    Book  MATH  Google Scholar 

  24. M. Lal,Mol. Phys. 17:57 (1969).

    Article  ADS  Google Scholar 

  25. N. Madras and A. D. Sokal,J. Stat. Phys. 56:109 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  26. J. P. Valleau, InProceedings of the International Symposium on Ludwig Boltzmann, G. Battimelli, M. G. Ianniello, and O. Kresten, eds. (1993).

  27. B. A. Berg and T. Neuhaus,Phys. Rev. Lett. 68:9 (1992).

    Article  ADS  Google Scholar 

  28. N. Madras and M. Piccioni,Importance sampling for families of distributions, Bernoulli (1994) submitted.

  29. J. P. Valleau,J. Chem. Phys. 99:4718 (1993).

    Article  ADS  Google Scholar 

  30. N. Madras and A. D. Sokal,J. Stat. Phys. 47:573 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  31. A. D. Sokal,Monte Carlo methods for the self-avoiding walk, preprint (1994).

  32. S. Caracciolo, A. Pelissetto, and A. D. Sokal,Phys. Rev. Lett. 72:179 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. F. Yates,Sampling Methods for Censuses and Surveys (Griffin, 1960).

  34. W. E. Deming,Some Theory of Sampling (Dover, New York, 1966).

    MATH  Google Scholar 

  35. S. Caracciolo, A. Pelissetto, and A. D. Sokal,Monte Carlo methods using reweighting: some warnings, preprint (1994).

  36. B. Li, N. Madras, and A. D. Sokal.Critical exponents, hyperscaling and universal amplitude ratios for two- and three-dimensional self-avoiding walks, preprint (1994).

  37. P. Grassberger and R. HeggerSimulations of 3-dimensional Θ-Polymer, preprint (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesi, M.C., Janse van Rensburg, E.J., Orlandini, E. et al. Monte carlo study of the interacting self-avoiding walk model in three dimensions. J Stat Phys 82, 155–181 (1996). https://doi.org/10.1007/BF02189229

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02189229

Key Words

Navigation