Skip to main content
Log in

Quantum chaotic dynamics and random polynomials

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the distribution of roots of polynomials of high degree with random coefficients which, among others, appear naturally in the context of “quantum chaotic dynamics.” It is shown that under quite general conditions their roots tend to concentrate near the unit circle in the complex plane. In order to further increase this tendency, we study in detail the particular case of self-inversive random polynomials and show that for them a finite portion of all roots lies exactly on the unit circle. Correlation functions of these roots are also computed analytically, and compared to the correlations of eigenvalues of random matrices. The problem of ergodicity of chaotic wavefunctions is also considered. For that purpose we introduce a family of random polynomials whose roots spread uniformly over phase space. While these results are consistent with random matrix theory predictions, they provide a new and different insight into the problem of quantum ergodicity Special attention is devoted to the role of symmetries in the distribution of roots of random polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.-J. Giannoni, A. Voros, and J. Zinn-Justin, eds.,Chaos et Physique Quantique/Chaos and Quantum Physics, (Elsevier, Amsterdam, 1991).

    Google Scholar 

  2. P. Cvitanovic, I. C. Percival, and A. Wirzba, eds., Quantum Chaos-Theory and Experiment,CHAOS J. 2(1) (1992).

  3. A. T. Bharucha-Reid and M. Sambandham,Random Polynomials (Academic Press, 1986).

  4. M. Marden,Geometry of Polynomials (American Mathematical Society, Providence, Rhode Island, 1966).

    Google Scholar 

  5. M. Kac,Probability and Related Topics in Physical Sciences (Interscience, New York, 1959).

    Google Scholar 

  6. E. Bogomolny, O. Bohigas, and P. Leboeuf,Phys. Rev. Lett. 68:2726 (1992).

    Google Scholar 

  7. J. Ginibre,J. Math. Phys. 6:440 (1965).

    Google Scholar 

  8. B. Jancovici,Phys. Rev. Lett. 46:386 (1981).

    Google Scholar 

  9. B. L. Altshuler, P. A. Lee, and R. A. Webb, eds.,Mesoscopic Phenomena in Solids (North-Holland, Amsterdam, 1991).

    Google Scholar 

  10. E. Bogomolny,Comm. Atomic Mol. Phys. 25:63 (1990);Nonlinearity 5:805 (1992).

    Google Scholar 

  11. M. V. Berry, N. L. Balazs, M. Tabor, and A. Voros,Ann. Phys. (NY)122:26–63 (1979).

    Google Scholar 

  12. M. Saraceno and A. Voros,Chaos 2:99 (1992).

    Google Scholar 

  13. M. L. Mehta,Random Matrices (Academic Press, New York, 1991).

    Google Scholar 

  14. O. Bohigas, InChaos et Physique Quantique/Chaos and Quantum Physics, M.-J. Giannoni, A. Voros, and J. Zinn-Justin, eds. (Elsevier, Amsterdam, 1991).

    Google Scholar 

  15. P. Leboeuf and A. Voros,J. Phys. A: Math. Gen. 23:1765 (1990).

    Google Scholar 

  16. P. Leboeuf,J. Phys. A: Math. Gen. 24:4575 (1991).

    Google Scholar 

  17. E. Bogomolny and C. Schmit,Nonlinearity 6:523 (1993).

    Google Scholar 

  18. J. E. Dunnage,Proc. Lond. Math. Soc. 16:53 (1966).

    Google Scholar 

  19. A. Edelman and E. Kostlan,Bull. Am. Math. Soc. 32:1 (1995).

    Google Scholar 

  20. M. S. Longuet-Higgins,Proc. R. Soc. A 246:99 (1958).

    Google Scholar 

  21. J. R. Klauder and B. Skagerstam,Coherent States (World Scientific, Singapore, 1985).

    Google Scholar 

  22. A. Perelomov,Generalized Coherent States and Their Applications (Springer, New York, 1986).

    Google Scholar 

  23. A. Voros,Ann. Inst. H. Poincaré A 24:31 (1976);Ann. Inst. H. Poincaré A 26:343 (1977).

    Google Scholar 

  24. O. Bohigas, M. J. Giannoni, and C. Schmit,Phys. Rev. Lett. 52:1 (1984).

    Google Scholar 

  25. F. Haake,Quantum Signature of Chaos (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  26. P. Leboeuf and P. Shukla, Universal fluctuations of zeros of chaotic wavefunctions, to appear inJ. Phys. A: Math. Gen.

  27. J. Hannay,J. Phys. A: Math. Gen. 29:101 (1996).

    Google Scholar 

  28. F. Haake, M. Kuś, and R. Sharf,Z. Phys. B-Condensed Matter 65:381 (1987).

    Google Scholar 

  29. P. Leboeuf, Statistical theory of chaotic wavefunctions, submitted for publication.

  30. V. Bargmann,Commun. Pure Appl. Math. 14:187 (1961);20:1 (1967).

    Google Scholar 

  31. C. N. Yang and T. D. Lee,Phys. Rev. 87:404 (1952).

    Google Scholar 

  32. B. Derrida,Physica A 177:31 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogomolny, E., Bohigas, O. & Leboeuf, P. Quantum chaotic dynamics and random polynomials. J Stat Phys 85, 639–679 (1996). https://doi.org/10.1007/BF02199359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02199359

Key Words

Navigation