Skip to main content
Log in

Recent trends in random number and random vector generation

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A survey of recent work in the areas of uniform pseudorandom number and uniform pseudorandom vector generation is presented. The emphasis is on methods for which a detailed theory is available. A progress report on the construction of quasirandom points for efficient multidimensional numerical integration is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Afflerbach, The sub-lattice structure of linear congruential random number generators, Manuscripta Math. 55 (1986) 455–465.

    Google Scholar 

  2. L. Afflerbach and H. Grothe, The lattice structure of pseudo-random vectors generated by matrix generators, J. Comp. Appl. Math. 23 (1988) 127–131.

    Google Scholar 

  3. L. Afflerbach and R. Weilbächer, The exact determination of rectangle discrepancy for linear congruential pseudorandom numbers, Math. Comp. 53 (1989) 343–354.

    Google Scholar 

  4. D.A. André, G.L. Mullen and H. Niederreiter, Figures of merit for digital multistep pseudorandom numbers, Math. Comp. 54 (1990) 737–748.

    Google Scholar 

  5. I.A. Antonov and V.M. Saleev, An economic method of computingLP t -sequences (Russian), Zh. Vychisl. Mat. i. Mat. Fiz. 19 (1979) 243–245.

    Google Scholar 

  6. A.C. Arvillias and D.G. Maritsas, Partitioning the period of a class ofm-sequences and application to pseudorandom number generation, J. ACM 25 (1978) 675–686.

    Google Scholar 

  7. V.C. Bhavsar and J.R. Isaac, Design and analysis of parallel Monte Carlo algorithms, SIAM J. Sci. Statist. Comp. 8 (1987) s73-s95.

    Google Scholar 

  8. I. Borosh and H. Niederreiter, Optimal multipliers for pseudo-random number generation by the linear congruential method, BIT 23 (1983) 65–74.

    Google Scholar 

  9. P. Bratley and B.L. Fox, Algorithm 659: Implementing Sobol's quasirandom sequence generator, ACM Trans. Math. Software 14 (1988) 88–100.

    Google Scholar 

  10. P. Bratley, B.L. Fox and L.E. Schrage,A Guide to Simulation, 2nd ed. (Springer, New York, 1987).

    Google Scholar 

  11. B.J. Collings, String decomposition of full-period Tausworthe sequences, Comm. Statist. Simulation Comp. 16 (1987) 673–678.

    Google Scholar 

  12. B.J. Collings and G.B. Hembree, Initializing generalized feedback shift register pseudorandom number generators, J. ACM 33 (1986), 706–711; Addendum, idi. B.J. Collings and G.B. Hembree, Initializing generalized feedback shift register pseudorandom number generators, J. ACM 35 (1988) 1001.

    Google Scholar 

  13. I. Deák, Multidimensional integration and stochastic programming,Numerical Techniques for Stochastic Optimization, eds. Yu. Ermoliev and R.J.-B. Wets (Springer, Berlin, 1988) pp. 187–200.

    Google Scholar 

  14. A. de Matteis and S. Pagnutti, Parallelization of random number generators and long-range correlations, Numer. Math. 53 (1988) 595–608.

    Google Scholar 

  15. V. Denzer and A. Ecker, Optimal multipliers for linear congruential pseudo-random number generators with prime moduli, BIT 28 (1988) 803–808.

    Google Scholar 

  16. L. Devroye,Non-Uniform Random Variate Generation (Springer, New York, 1986).

    Google Scholar 

  17. H.J.A. Duparc, C.G. Lekkerkerker and W. Peremans, Reduced sequences of integers and pseudo-random numbers, Report ZW 1953-002, Math. Centrum, Amsterdam (1953).

    Google Scholar 

  18. J. Eichenauer, H. Grothe and J. Lehn, Marsaglia's lattice test and non-linear congruential pseudo random number generators, Metrika 35 (1988) 241–250.

    Google Scholar 

  19. J. Eichenauer, H. Grothe, J. Lehn and A. Topuzoĝlu, A multiple recursive nonlinear congruential pseudo random number generator, Manuscripta Math. 59 (1987) 331–346.

    Google Scholar 

  20. J. Eichenauer and J. Lehn, A non-linear congruential pseudo random number generator, Statist. Papers 27 (1986) 315–326.

    Google Scholar 

  21. J. Eichenauer and J. Lehn, On the structure of quadratic congruential sequences, Manuscripta Math. 58 (1987) 129–140.

    Google Scholar 

  22. J. Eichenauer, J. Lehn and A. Topuzoĝlu, A nonlinear congruential pseudorandom number generator with power of two modulus, Math. Comp. 51 (1988) 757–759.

    Google Scholar 

  23. J. Eichenauer and H. Niederreiter, On Marsaglia's lattice test for pseudorandom numbers, Manuscripta Math. 62 (1988) 245–248.

    Google Scholar 

  24. J. Eichenauer-Herrmann and H. Grothe, A remark on long-range correlations in multiplicative congruential pseudorandom number generators. Numer. Math. 56 (1989) 609–611.

    Google Scholar 

  25. J. Eichenauer-Herrmann, H. Grothe and J. Lehn, On the period length of pseudorandom vector sequences generated by matrix generators, Math. Comp. 52 (1989) 145–148.

    Google Scholar 

  26. J. Eichenauer-Herrmann, H. Grothe, H. Niederreiter and A. Topuzoĝlu, On the lattice structure of a nonlinear generator with modulus 2α, J. Comp. Appl. Math. 31 (1990) 81–85.

    Google Scholar 

  27. H. Faure, Discrépance de suites associées à un système de numération (en dimensions). Acta Arith. 41 (1982) 337–351.

    Google Scholar 

  28. G.S. Fishman, Multiplicative congruential random number generators with modulus 2β: An exhaustive analysis for β=32 and a partial analysis for β=48. Math. Comp. 54 (1990) 331–344.

    Google Scholar 

  29. G.S. Fishman and L.R. Moore, An exhaustive analysis of multiplicative congruential random number generators with modulus 231–1, SIAM J. Sci. Statist. Comp. 7 (1986) 24–45; Erratum, ibid. G.S. Fishman and L.R. Moore, An exhaustive analysis of multiplicative congruential random number generators with moduls 231–1, SIAM J. Sci. Statist. Comp. 7 (1986) 1058.

    Google Scholar 

  30. B.L. Fox, Algorithm 647: Implementation and relative efficiency of quasirandom sequence generators, ACM Trans. Math. Software 12 (1986) 362–376.

    Google Scholar 

  31. M. Fushimi, Increasing the orders of equidistribution of the leading bits of the Takusworthe sequence, Inf. Process. Lett. 16 (1983) 189–192.

    Google Scholar 

  32. M. Fushimi, Designing a uniform random number generator whose subsequences arek-distributed, SIAM J. Comput. 17 (1988) 89–99.

    Google Scholar 

  33. M. Fushimi and S. Tezuka, Thek-distribution of the generalized feedback shift register pseudorandom numbers, Comm. ACM 26 (1983) 516–523.

    Google Scholar 

  34. H. Grothe, Matrixgeneratoren zur Erzeugung gleichverteilter Zufallsvektoren,Zufallszahlen und Simulationen, eds. L. Afflerbach and J. Lehn (Teubner, Stuttgart, 1986) pp. 29–34.

    Google Scholar 

  35. H. Grothe, Matrix generators for pseudo-random vector generation, Statist. Papers 28 (1987) 233–238.

    Google Scholar 

  36. H. Grothe, Matrixgeneratoren zur Erzeugung gleichverteillter Pseudozufallsvektoren, Dissertation, Techn. Hochschule Darmstadt (1988).

  37. J.H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2 (1960) 84–90; Berichtigung, ibid. J.H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Number. Math. 2 (1960) 196.

    Google Scholar 

  38. E. Hlawka, Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Ann. Mat. Pura Appl. 54 (1961) 325–333.

    Google Scholar 

  39. L.K. Hua and Y. Wang,Applications of Number Theory to Numerical Analysis (Springer, Berlin, 1981).

    Google Scholar 

  40. J. Kiefer, On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm, Pacific J. Math. 11 (1961) 649–660.

    Google Scholar 

  41. S. Kirkpatrick and E. P. Stoll, A very fast shift-register sequence random number generator.J. Comput. Phys. 40 (1981) 517–526.

    Google Scholar 

  42. D.E. Knuth.The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd ed. (Addison-Wesley, Reading, MA, 1981).

    Google Scholar 

  43. R.F. Koopman. The orders of equidistribution of subsequences of some asymptotically random sequences, Comm. ACM 29 (1986) 802–806.

    Google Scholar 

  44. L. Kuipers and H. Niederreiter,Uniform Distribution of Sequences (Wiley, New York, 1974).

    Google Scholar 

  45. G. Larcher and H. Niederreiter, Optimal coefficients modulo prime powers in the three-dimensional case. Ann. Mat. Pura Appl. 155 (1989) 299–315.

    Google Scholar 

  46. P. L'Ecuyer, Efficient and portable combined random number generators. Comm. ACM 31 (1988) 742–749, 774.

    Google Scholar 

  47. D.H. Lehmer, Mathematical methods in large-scale computing units,Proc. 2nd Symp. on Large-Scale Digital Calculating Machinery, Cambridge, MA, 1949 (Harvard Univ. Press, Cambridge, MA, 1951) pp. 141–146.

    Google Scholar 

  48. T.G. Lewis and W.H. Payne, Generalized feedback shift register pseudorandom number algorithm, J. ACM 20 (1973) 456–468.

    Google Scholar 

  49. R. Lidl and H. Niederreiter,Finite Fields (Addison-Wesley, Reading, MA, 1983).

    Google Scholar 

  50. R. Lidl and H. Niederreiter,Introduction to Finite Fields and Their Applications (Cambridge Univ. Press, Cambrdige, 1986).

    Google Scholar 

  51. G. Marsanglia, The structure of linear congruential sequences, in:Applications of Number Theory to Numerical Analysis, ed. S.K. Zaremba (Academic Press, New York, 1972) pp. 249–285.

    Google Scholar 

  52. G. Marsaglia and L.-H. Tsay, Matrices and the structure of random number sequences, Linear Algebra Appl. 67 (1985) 147–156.

    Google Scholar 

  53. G.L. Mullen and H. Niederreiter, Optimal characterstic polymonials for digital multistep pseudorandom numbers, Computing 39 (1987) 155–163.

    Google Scholar 

  54. H. Niederreiter, Pseudo-random numbers and optimal coefficients. Adv. Math. 26 (1977) 99–181.

    Google Scholar 

  55. H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978) 957–1041.

    Google Scholar 

  56. H. Niederreiter, Applications des corps finis aux nombres pseudo-aléatoires,Sém. Théorie des Nombres 1982–1983, Exp. 38, Univ. de Bordeaux 1, Talence (1983).

    Google Scholar 

  57. H. Niederreiter, The performance ofk-step pseudorandom number generators under the uinformity test, SIAM J. Sci. Statist. Comp. 5 (1984) 798–810.

    Google Scholar 

  58. H. Niederreiter, The serial test for pseudo-random numbers generated by the linear congruential method, Number. Math. 46 (1985) 51–68.

    Google Scholar 

  59. H. Niederreiter, A pseudorandom vector generator based on finite field arithmetic, Math. Japonica 31 (1986) 759–774.

    Google Scholar 

  60. H. Niederreiter, Pseudozufallszahlen und die Theorie der Gleichverteilung, Sitzungsber. Österr. Akad. Wiss. Math.-Naturwiss. Kl. Abt. II 195 (1986) 109–138.

    Google Scholar 

  61. H. Niederreiter, A statistical analysis of generalized feedback shift register pseudorandom number generators, SIAM J. Sci. Statist. Comp. 8 (1987) 1035–1051.

    Google Scholar 

  62. H. Niederreiter, Point sets and sequences with small discrepancy. Monatsh. Math. 104 (1987) 273–337.

    Google Scholar 

  63. H. Niederreiter, Remarks on nonlinear congruential pseudorandom numbers, Metrika 35 (1988) 321–328.

    Google Scholar 

  64. H. Niederreiter, Statistical independence of nonlinear congruential pseudorandom numbers, Monatsh. Math. 106 (1988). 149–159.

    Google Scholar 

  65. H. Niederreiter, Quasi-Monte Carlo methods for multidimensional numerical integration,Numerical Integration III, eds. H. Brass and G. Hämmerlin, Int. Series of Num. Math., 85 (Birkhäuser, Basel, 1988) pp. 157–171.

    Google Scholar 

  66. H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988) 51–70.

    Google Scholar 

  67. H. Niederreiter, The serial test for digitalk-step pseudorandom numbers. Math. J. Okayama Univ. 30 (1988) 93–119.

    Google Scholar 

  68. H. Niederreiter, The serieal test for congruential pseudorandom numbers generated by inversions, Math. Comp. 52 (1989) 135–144.

    Google Scholar 

  69. H. Niederreiter, Statistical independence properties of pseudorandom vectors produced by matrix generators. J. Comp. Appl. Math. 31 (1990) 139–151.

    Google Scholar 

  70. H. Niederreiter, Lower bounds for the discrepancy of inversive congruential pseudorandom numbers, Math. Comp. 55 (1990) 277–287.

    Google Scholar 

  71. H. Niederreiter, Pseudorandom numbers generated from shift register sequences, in:Zahlentheoretische Analysis, Springer Lecture Notes in Math., to appear.

  72. N. Niki, Finite field arithmetics and multidimensional unform pseudorandom numbers (Japanese), Proc. Inst. Statist. Math. 32 (1984) 231–239.

    Google Scholar 

  73. A.I. Pavlov and B.B. Pokhodzeî, Pseudo-random numbers generated by linear recurrence relations over a finite field (Russian), Zh. Vychisl. Mat. i Mat. Fiz. 19 (1979) 836–842.

    Google Scholar 

  74. O.E. Percus and J.K. Percus, Long range correlations in linear congruential generators, J. Comput. Phys. 77 (1988). 267–269.

    Google Scholar 

  75. B.D. Ripley, The lattice structure of pseudo-random number generators, Proc. Roy. Soc. London Ser. A 389 (1983) 197–204.

    Google Scholar 

  76. W.M. Schmidt, Irregularities of distribution VII, Acta Arith. 21 (1972) 45–50.

    Google Scholar 

  77. I.M. Sobol', The distribution of points in a cube and the approximate evaluation of integrals (Russian), Zh. Vychisl. Mat. i Mat Fiz. 7 (1967). 784–802.

    Google Scholar 

  78. E.A.D.E. Tahmi, Contribution aux générateurs de vecteurs pseudo-aléatoires, Thèse, Univ. Sci. Techn. H. Boumedienne, Algiers (1982).

    Google Scholar 

  79. R.C. Tausworthe, Random numbers generated by linear recurrence modulo two, Math. Comp. 19 (1965) 201–209.

    Google Scholar 

  80. S. Tezuka, On the discrepancy of GFSR pseudorandom numbers, J. ACM 34 (1987) 939–949.

    Google Scholar 

  81. S. Tezuka, A heuristic approach for finding asymptotically random GFSR generators, J. Inf. Proc. 10 (1987) 178–182.

    Google Scholar 

  82. S. Tezuka. On optimal GFSR pseudorandom number generators, Math. Comp. 50 (1988) 531–533.

    Google Scholar 

  83. A. van Wijngaarden, Mathematics and computing,Proc. Symp. on Automatic Digital Computation, London, 1954 (H.M. Stationery Office, London, 1954) pp. 125–129.

    Google Scholar 

  84. B.A. Wichmann and I.D. Hill, An efficient and portable pseudo-random number generator, Appl. Stat. 31 (1982) 188–190; Corrections, ibid. B.A. Wichmann and I.D. Hill. An efficient and portable pseudo-random number generator, Appl. Stat. 33 (1984) 123.

    Google Scholar 

  85. B.A. Wichmann and I.D. Hill, Building a random-number generator, Byte 12, No. 3 (1987) 127–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niederreiter, H. Recent trends in random number and random vector generation. Ann Oper Res 31, 323–345 (1991). https://doi.org/10.1007/BF02204856

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02204856

Keywords

Navigation