Skip to main content
Log in

Deoxyribonucleic acid base composition of species ofKlebsiella, Azotobacter andBacillus

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Methods of molecular taxonomy were used to study the genome or deoxyribonucleic acid (DNA) of different strains of five genera of nitrogen-fixing bacteria. The DNA base compositions of all strains ofKlebsiella pneumoniae (previously classified as strains ofAchromobacter sp.,Aerobacter aerogenes orK. pneumoniae) occupy a fairly narrow range of values from 56.7 to 62.5% G-C content. No significant difference was observed in the DNA base composition of bacteria which can fix molecular nitrogen and that of strains which do not fix nitrogen.

Six strains of the speciesAzotobacter vinelandii and the one strain ofA. chroococcum tested possess similar DNA base composition. The strain ofAzotobacter agilis tested, however, had a DNA base composition different from these seven strains. The G-C content of the strains ofAzotomonas insolita falls within the broad range of thePseudomonas genus (55–70%), but the peritrichous flagellation of these strains eliminates them from this genus. Their classification still remains to be ascertained.

Eleven strains of the speciesBacillus polymyxa andB. macerans formed two homogenous groups of organisms with different DNA base composition. The atypical strainB. polymyxa Hino is genetically similar to the strains of the speciesBacillus macerans and perhaps should be reclassified as such.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bendich, A. 1957. Methods for characterization of nucleic acids by base composition, p. 715–723.In S. P. Colowick and N. O. Kaplan, [ed.], Methods in enzymology, Vol. III. - Academic Press, Inc., New York.

    Google Scholar 

  • Breed, R. S., Murray, E. G. D. andSmith, N. R. 1957. Bergey's Manual of Determinative Bacteriology. 7th Ed. - The Williams and Wilkins Co., Baltimore.

    Google Scholar 

  • Centifanto, Y. M. andSilver, W. S. 1964. Leaf-nodule symbiosis. I. Endophyte ofPsychotria bacteriophila.- J. Bacteriol.88: 776–781.

    Google Scholar 

  • De Ley, J. 1965. DNA base composition ofKlebsiella rubiacearum. - Antonie van Leeuwenhoek31: 203–204.

    Google Scholar 

  • De Ley, J. 1968. DNA base composition and classification of some more free-living nitrogen-fixing bacteria. - Antonie van Leeuwenhoek34: 66–70.

    Google Scholar 

  • De Ley, J. andPark, I. W. 1966. Molecular biological taxonomy of some free-living nitrogen-fixing bacteria. - Antonie van Leeuwenhoek32: 6–16.

    Google Scholar 

  • De Ley, J. andVan Muylem, J. 1963. Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. - Antonie van Leeuwenhoek29: 344–358.

    Google Scholar 

  • Doty, P., Marmur, J. andSueoka, N. 1959. The heterogeneity in properties and functioning of deoxyribonucleic acids. - Brookhaven Symp. in Biol.12: 1–16.

    Google Scholar 

  • Edwards, P. R. andEwing, W. H. 1962. Identification of Enterobacteriaceae. 2nd ed. - Burgess Publishing Co., Minneapolis.

    Google Scholar 

  • Ewing, W. H. 1962. Enterobacteriaceae: biochemical methods for group differentiation. - U.S. Public Health Serv. Publ. 734.

  • Geiduschek, E. P. 1962. On the factors controlling the reversibility of DNA denaturation. - J. Mol. Biol.4: 467–487.

    Google Scholar 

  • Grau, F. H., andWilson, P. W. 1962. Physiology of nitrogen fixation byBacillus polymyxa. - J. Bacteriol.83: 490–496.

    Google Scholar 

  • Hill, L. R. 1966. An index to deoxyribonucleic acid base composition of bacterial species. - J. Gen. Microbiol.44: 419–437.

    Google Scholar 

  • Mahl, M. C., Wilson, P. W., Fife, M. A. andEwing, W. H. 1965. Nitrogen fixation by members of the tribe Klebsielleae. - J. Bacteriol.89: 1482–1487.

    Google Scholar 

  • Mandel, M. andRownd, R. 1964. Deoxyribonucleic acid base composition in the Enterobacteriaceae: An evolutionary sequence?In C. A. Leone [ed.], Taxonomic biochemistry and serology. - The Ronald Press Co., New York.

    Google Scholar 

  • Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. - J. Mol. Biol.3: 208–218.

    Google Scholar 

  • Marmur, J. andDoty, P. 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. - J. Mol. Biol.5: 109–118.

    Google Scholar 

  • Marmur, J., Falkow, S. andMandel, M. 1963. New approaches to bacterial taxonomy. - Ann. Rev. Microbiol.17: 329–372.

    Google Scholar 

  • Marmur, J., Seaman, E. andLevine, J. 1963. Interspecific transformation inBacillus. - J. Bacteriol.85: 461–467.

    Google Scholar 

  • Parejko, R. A. andWilson, P. W. 1968. Taxonomy ofAzotomonas species. - J. Bacteriol.95: 143–146.

    Google Scholar 

  • Ravin, A. W. 1963. Experimental approaches to the study of bacterial phylogeny. - Am. Naturalist97: 307–318.

    Google Scholar 

  • Rubenchick, L. I. 1959. A contribution to the systematics of bacteria of the Azotobacteriaceae family. - Microbiology28: 309–315.

    Google Scholar 

  • Saunders, G. F., Campbell, L. L. andPostgate, J. R. 1964. Base composition of deoxyribonucleic acid of sulfate-reducing bacteria deduced from buoyant density measurements in cesium chloride. - J. Bacteriol.87: 1073–1078.

    Google Scholar 

  • Signal, N., Senez, J. C., le Gall, J. andSebald, M. 1963. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. - J. Bacteriol.85: 1315–1318.

    Google Scholar 

  • Stapp, C. 1940.Azotomonas insolita, ein neuer aerober stickstoff bindender Mikroorganismus. - Zentr. Bakteriol. Parasitenk. II. Abt.102: 1–19.

    Google Scholar 

  • Strandberg, G. W. andWilson, P. W. 1967. Molecular H2 and the pN2 function ofAzotobacter. - Proc. Natl. Acad. Sci.58: 1404–1409.

    Google Scholar 

  • Szybalski, W. andMennigmann, H. D. 1962. The recording thermospectrophotometer, an automatic device for determining the thermal stability of nucleic acids. - Anal. Biochem.3: 267–275.

    Google Scholar 

  • Wang, S. Y. andHashagen, J. M. 1964. The determination of the base composition of deoxyribonucleic acids by bromination. - J. Mol. Biol.8: 333–340.

    Google Scholar 

  • Witz, D. F., Detroy, R. W. andWilson, P. W. 1967. Nitrogen fixation by growing cells and cell-free extracts of the Bacillaceae. - Arch. Mikrobiol.55: 369–381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by National Science Foundation grant GB-483 and National Institutes of Health grants AI 01417 (11) and based on Ph.D. thesis of senior author (1967).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouellette, C.A., Burris, R.H. & Wilson, P.W. Deoxyribonucleic acid base composition of species ofKlebsiella, Azotobacter andBacillus . Antonie van Leeuwenhoek 35, 275–286 (1969). https://doi.org/10.1007/BF02219149

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02219149

Keywords

Navigation