Skip to main content
Log in

Lithium and serotonin function: implications for the serotonin hypothesis of depression

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Lithium enjoys wide clinical use in the treatment of affective disorders, but the mechanism of its action in these conditions is still controversial. Recent studies have shown that lithium can interact with other antidepressant drugs to enhance their efficacy, perhaps by specific effects on serotonin (5-HT) function. A large body of independent evidence suggests that 5-HT function is abnormal in depression. This review documents preclinical evidence of lithium's effects on 5-HT function at the levels of precursor uptake, synthesis, storage, catabolism, release, receptors, and receptor-effector interactions. The weight of this evidence suggests that lithium's primary actions on 5-HT may be presynaptic, with many secondary postsynaptic effects. Studies in humans, using very different methodological approaches, generally suggest that lithium has a net enhancing effect on 5-HT function. These actions of lithium may serve to correct as-yet unspeccified abnormalities of 5-HT function involved in the pathogenesis of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahluwalia P, Singhal RL (1980) Effect of low-dose lithium administration and subsequent withdrawal on biogenic amines in rat brain. Br J Pharmacol 71:601–607

    PubMed  CAS  Google Scholar 

  • Ahluwalia P, Singhal RL (1981) Monoamine uptake into synaptosomes from various regions of rat brain following lithium administration and withdrawal. Neuropharmacology 20:483–487

    Article  PubMed  CAS  Google Scholar 

  • Atterwill K, Tordoff AFC (1982) Effects of repeated lithium administration on the subcellular distribution of 5-hydroxytryptamine in rat brain. Br J Pharmacol 76:413–421

    PubMed  CAS  Google Scholar 

  • Banki CM, Molnar G (1981) Cerebrospinal fluid 5-hydroxyindoleacetic acid as an index of central serotonergic processes. Psychiatry Res 5:23–32

    Article  PubMed  CAS  Google Scholar 

  • Baron M, Barkai A, Gruen R, Peselow E, Fieve RR, Quitkin F (1986) Platelet [3H] imipramine binding in affective disorders: trait versus state characteristics. Am J Psychiatry 143:711–717

    PubMed  CAS  Google Scholar 

  • Battaglia G, Shannon M, Titeler M (1983) Modulation of brain S2 serotonin receptors by lithium, sodium and potassium chloride. Life Sci 32:2597–2601

    Article  PubMed  CAS  Google Scholar 

  • Berggren U (1985) The effect of acute lithium administration on brain monoamine synthesis and the precursor amino acids tryosine and tryptophan in brain and plasma in rats. J Neural Transm 61:175–181

    Article  PubMed  CAS  Google Scholar 

  • Berggren U (1986) Effects of chronic lithium treatment on brain monoamine metabolism and amphetamine-induced locomotor stimulation in rats. J Neural Transm 64:239–250

    Article  Google Scholar 

  • Berggren U (1987) Effects of short-term lithium administration on tryptophan levels and 5-hydroxytryptamine synthesis in whole brain and brain regions in rats. J Neural Transm 69:115–121

    Article  PubMed  CAS  Google Scholar 

  • Berrettini WH, Nurnberger JI Jr, Scheinin M, Seppala T, Linnoila M, Narrow W, Simmons-Ailling S, Gershon ES (1985) Cerebrospinal fluid and plasma monoamines and their metabolites in euthymic bipolar patients. Biol Psychiatry 20:257–2696

    Article  PubMed  CAS  Google Scholar 

  • Blier P, deMontigny C (1985) Short-term lithium administration enhances serotonergic neurotransmission: electrophysiological evidence in the rat CNS. Eur J Pharmacol 113:69–77

    Article  PubMed  CAS  Google Scholar 

  • Blier P, deMontigny C, Tardif D (1987) Short-term lithium treatment enhances responsiveness of postsynaptic 5-HT1A receptors without altering 5-HT autoreceptor sensitivity: an electrophysiological study in the rat brain. Synapse 1:225–232

    Article  PubMed  CAS  Google Scholar 

  • Bliss EL, Ailion J (1970) The effect of lithium upon brain neuroamines. Brain Res 24:305–310

    Article  PubMed  CAS  Google Scholar 

  • Born R, Grignani G, Martin K (1980) Long-term effect of lithium on the uptake of 5-hydroxytryptamine by human platelets. Br J Clin Pharmacol 9:321–325

    PubMed  CAS  Google Scholar 

  • Bowden CL, Seleshi E, Contreras S, Javors MA, Maas JW (1988) The relationship in manic disorder of CSF amine metabolites to clinical characteristics after lithium treatment. Soc Neurosci Abstr 14:1074

    Google Scholar 

  • Bowers MB, Heninger GR (1977) Clinical effects and cerebrospinal fluid acid monoamine metabolites. Commun Psychopharm 1:135–145

    CAS  Google Scholar 

  • Bunney WE Jr, Garland-Bunney BL (1987) Mechanisms of action of lithium in affective illness: Basic and clinical implications. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 553–565

    Google Scholar 

  • Butler PD, Barkai AI (1987) Agonist-stimulation of cerebral phosphoinositide turnover following long-term treatment with antidepressants. Adv Exp Med Biol 221:531–547

    PubMed  CAS  Google Scholar 

  • Cappeliez P, White N, Duhamel J-R (1982) Effect of serotonin depletion induced byp-chloroamphetamine on changes in rats' activity levels produced by lithium. Neuropsychobiology 8:129–134

    Article  PubMed  CAS  Google Scholar 

  • Chase TN, Katz RI, Kopin IJ (1969) Release of (3H)-serotonin from brain slices. J Neurochem 16:607–615

    Article  PubMed  CAS  Google Scholar 

  • Collard KJ (1978) The effect of lithium on the increase in forebrain 5-hydroxyindoleacetic acid produced by raphe stimulation. Br J Pharmacol 62:137–142

    PubMed  CAS  Google Scholar 

  • Collard KJ, Roberts MHT (1977) Effects of lithium on the elevation of forebrain 5-hydroxyindoles by tryptophan. Neuropharmacology 16:671–673

    Article  PubMed  CAS  Google Scholar 

  • Coppen AJ (1967) The biochemistry of affective disorder. Br J Psychiatry 113:1237

    Article  PubMed  CAS  Google Scholar 

  • Coppen AJ, Swade C, Wood K (1980) Lithium restores abnormal platelet 5HT transport in patients with affective disorders. Br J Psychiatry 136:235–238

    Article  PubMed  CAS  Google Scholar 

  • Corrodi H, Fuxe K, Hokfelt T, Schou M (1967) The effect of lithium on cerebral monoamine neurons. Psychopharmacologia 11:345–353

    Article  PubMed  CAS  Google Scholar 

  • Cowen PJ, Charig EM (1987) Neuroendocrine responses to intravenous tryptophan in major depression. Arch Gen Psychiatry 44:958–966

    PubMed  CAS  Google Scholar 

  • Delgado PL, Price L, Charney DS, Aghajanian GK, Landis H, Heninger GR (1988) Tryptophan depletion alters mood in depression. Am Psychiatr Assoc New Research Abstr, p 89 (# NR165)

  • deMontigny C, Cournoyer G, Morissette R, Langlois R, Caille G (1983) Lithium carbonate addition in tricyclic antidepressant-resistant depression: correlations with the neurobiologic actions of tricyclic antidepressant drugs and lithium ion on the serotonin system. Arch Gen Psychiatry 40:1327–1334

    PubMed  Google Scholar 

  • Ehrlich BE, Diamond JM, Braun LD, Cornford EM, Oldendorf WH (1980) Effects of lithium on blood-brain barrier transport of the neurotransmitter precursors choline, tyrosine and tryptophan. Brain Res 193:604–607

    Article  PubMed  CAS  Google Scholar 

  • Friedman E, Dallob A, Levine G (1979) The effect of long-term lithium treatment on reserpine-induced supersensitivity in dopaminergic and serotonergic transmission. Life Sci 25:1263–1266

    Article  PubMed  CAS  Google Scholar 

  • Friedman E, Wang H-Y (1988) Effect of chronic lithium treatment on 5-hydroxytryptamine autoreceptors and release of 5-[3H] hydroxytryptamine from rat brain cortical, hippocampal, and hypothalamic slices. J Neurochem 50:195–201

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Yamada K, Kohno Y, Nagasaki N (1978) Brain serotonin metabolism with relation to the head twitches elicited by lithium in combination with reserpine in mice. Pharmacol Biochem Behav 10:547–549

    Google Scholar 

  • Fyro B, Patterson V, Sedvall G (1975) The effect of lithium treatment on manic symptoms and levels of monoamine metabolites in cerebrospinal fluid of manic depressive patients. Psychopharmacologia 44:99–103

    Article  PubMed  CAS  Google Scholar 

  • Glue PW, Cowen PJ, Nutt DJ, Kolakowska T, Grahame-Smith DG (1986) The effect of lithium on 5-HT-mediated neuroendocrine responses and platelet 5-HT receptors. Psychopharmacology 90:398–402

    Article  PubMed  CAS  Google Scholar 

  • Goodnick PJ, Arora RC, Jackman H, Meltzer HY (1984) Neurochemical changes during discontinuation of lithium prophylaxis. II. Alterations in platelet serotonin function. Biol Psychiatry 19:891–198

    PubMed  CAS  Google Scholar 

  • Goodwin FK, Post RM (1983) 5-Hydroxytryptamine and depression: a model for the interaction of normal variance with pathology. Br J Clin Pharmacol 15:393S-405S

    PubMed  Google Scholar 

  • Goodwin GM, DeSouza RJ, Wood AJ, Green AR (1986a) Lithium decreases 5-HT1A and 5-HT2 receptor and α-adrenoceptor mediated function in mice. Psychopharmacology 90:482–487

    PubMed  CAS  Google Scholar 

  • Goodwin GM, DeSouza RJ, Wood AJ, Green AR (1986b) The enhancement of lithium of the 5-HT1A mediated serotonin syndrome produced by 8-OH-DPAT in the rat: evidence for a post-synaptic mechanism. Psychopharmacology 90:488–493

    PubMed  CAS  Google Scholar 

  • Grahame-Smith DG, Green AR (1974) The role of brain 5-hydroxytryptamine in the hyperactivity produced in rats by lithium and monoamine oxidase inhibition. Br J Pharmacol 52:19–26

    PubMed  CAS  Google Scholar 

  • Grof E, Grof P, Brown GM (1985) Effects of long-term lithium treatment on prolactin regulation. In: Kemali D, Racagni G (eds) Chronic treatments in neuropsychiatry. Raven Press, New York, pp 81–87

    Google Scholar 

  • Harrison-Read PE (1979) Evidence from behavioural reactions to fenfluramine, 5-hydroxytryptophan, and 5-methoxy-N,N-dimethyltryptamine for differential effects of short-term and long-term lithium on indoleaminergic mechanisms in rats. Br J Pharmacol 66:144–145

    Google Scholar 

  • Harrison-Read PE (1981) Behavioural studies with lithium in rats: Implications for animal models of mania and depression. In: Hrdina PD, Singhal RL (eds) Neuroendocrine regulation and altered behaviour. Plenum Press, New York, pp 224–262

    Google Scholar 

  • Heninger GR, Charney DS, Sternberg DE (1983) Lithium carbonate augmentation of antidepressant treatment: an effective prescription for treatment-refractory depression. Arch Gen Psychiatry 40:1335–1342

    PubMed  CAS  Google Scholar 

  • Heninger GR, Charney DS, Sternberg DS (1984) Serotonergic function in depression: prolactin response to intravenous tryptophan in depressed patients and healthy subjects. Arch Gen Psychiatry 41:398–402

    PubMed  CAS  Google Scholar 

  • Herrero E, Aragon MC, Gimenez C, Valdivieso F (1983) Tryptophan transport into plasma membrane vesicles derived from rat brain synpatosomes. J Neurochem 40:332–337

    Article  PubMed  CAS  Google Scholar 

  • Herrero E, Gimenez C, Aragon MC (1987) Chronic administration of lithium modulates tryptophan transport by changing the properties of the synaptosomal plasma membrane. Life Sci 41:643–650

    Article  PubMed  CAS  Google Scholar 

  • Ho AKS, Loh HH, Craves F, Hitzemann RJ, Gershon S (1970) The effect of prolonged lithium treatment on the synthesis rate and turnover of monoamines in brain regions of rats. Eur J Pharmacol 10:72–78

    Article  CAS  Google Scholar 

  • Hotta I, Yamawaki S (1986) Lithium decreases in 5-HT1 receptors but increases 5-HT-sensitive adenylate cyclase activity in rat hippocampus. Biol Psychiatry 21:1382–1390

    Article  PubMed  CAS  Google Scholar 

  • Hotta I, Yamawaki S (1988) Possible involvement of presynaptic 5-HT autoreceptors in effect of lithium on 5-HT release in hippocampus of rat. Neuropharmacology 27:987–992

    Article  PubMed  CAS  Google Scholar 

  • Hotta I, Yamawaki S, Segawa T (1986) Long-term lithium treatment causes serotonin receptor down-regulation via serotonergic presynapses in rat brain. Neuropsychiobiology 16:19–26

    Article  CAS  Google Scholar 

  • Jefferson JW, Greist JH, Ackerman DL, Carroll JA (1987) Lithium encyclopedia for clinical practice, 2nd edn. American Psychiatric Press, Washington, DC

    Google Scholar 

  • Karoum F, Korpi ER, Chuang L-W, Linnoila M, Wyatt RJ (1986) The effects of desipramine, zimelidine, electroconvulsive treatment and lithium on rat brain biogenic amines: a comparison with peripheral changes. Eur J Pharmacol 121:377–385

    Article  PubMed  CAS  Google Scholar 

  • Katz RI, Kopin IJ (1969) Release of norepinephrine-3H and serotonin-3H evoked from brain slices by electrical-field stimulation — calcium dependency and the effects of lithium, ouabain and tetrodotoxin. Biochem Pharmacol 18:1935–1939

    Article  CAS  Google Scholar 

  • Kendall DA, Nahorski SR (1987) Acute and chronic lithium treatments influence agonist and depolarization-stimulated inositol phospholipid hydrolysis in rat cerebral cortex. J Pharm Exp Ther 241:1023–1027

    CAS  Google Scholar 

  • Knapp S, Mandell AJ (1973) Short- and long-term lithium administration: effects on the brain's serotonergic biosynthetic systems. Science 180:645–647

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, Mandell AJ (1979) Conformational influences on brain tryptophan hydroxylase by submicromolar calcium: opposite effects of equimolar lithium. J Neural Transm 45:1–15

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, Mandell AJ (1983) Lithium and chlorimipramine differentially alter the stability properties of tryptophan hydroxylase as seen in allosteric and scattering kinetics. Psychiatry Res 8:311–323

    Article  PubMed  CAS  Google Scholar 

  • Leighton WP, Rosenblatt S, Chanley JD (1983) Lithium-induced changes in plasma amino acid levels during treatment of affective disorders. Psychiatry Res 8:33–40

    Article  PubMed  CAS  Google Scholar 

  • Lingjaerde O (1977) Platelet uptake and storage of serotonin. In: Essman WB (ed) Serotonin in health and disease, vol 4. Spectrum, New York

    Google Scholar 

  • Linnoila M, Miller TL, Bartko J, Potter WZ (1984) Five antidepressant treatments in depressed patients: effects on urinary serotonin and 5-hydroxyindoleacetic acid. Arch Gen Psychiatry 41:688–692

    PubMed  CAS  Google Scholar 

  • Maggi A, Enna SJ (1980) Regional alterations in rat brain neurotransmitter systems following chronic lithium treatment. J Neurochem 34:888–892

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY, Lowy MT (1987) The serotonin hypothesis of depression. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 513–526

    Google Scholar 

  • Meltzer HY, Simonovic M, Sturgeon RD, Fang VS (1981) Effect of antidepressants, lithium and electroconvulsive treatment on rat serum prolactin levels. Acta Psychiatr Scand [Suppl] 63:100–121

    Article  Google Scholar 

  • Meltzer HY, Arora RC, Goodnick P (1983) Effect of lithium carbonate on serotonin uptake in blood platelets of patients with affective disorders. J Affective Disord 5:215–221

    Article  CAS  Google Scholar 

  • Meltzer HY, Arora RC, Robertson A, Lowy M (1984a) Platelet3H-imipramine binding and platelet 5-HT uptake in affective disorders and schizophrenia. Clin Neuropharmacol 7:320–321

    Article  Google Scholar 

  • Meltzer HY, Lowy M, Robertson A, Goodnick P, Perline R (1984b) Effect of 5-hydroxytryptophan on serum cortisol levels in major affective disorders. III. Effect of antidepressants and lithium carbonate. Arch Gen Psychiatry 41:391–397

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Umberkoman-Wiita B, Robertson A, Tricou BJ, Lowy M, Perline R (1984c) Effect of 5-hydroxytryptophan on serum cortisol levels in major affective disorders. I. Enhanced response in depression and mania. Arch Gen Psychiatry 41:366–374

    PubMed  CAS  Google Scholar 

  • Mendels J (1971) Relationship between depression and mania. Lancet I:342

    Article  Google Scholar 

  • Mendels J, Frazer A, Fitzgerald RG, Ramsey TA, Stokes JW (1972) Biogenic amine metabolites in cerebrospinal fluid of depressed and manic patients. Science 175:1380–1382

    Article  PubMed  CAS  Google Scholar 

  • Minegishi A, Fukumori R, Satoh T, Kitagawa H, Yanaura S (1981) Interaction of lithium and disulfiram in hexobarbital hypnosis: possible role of the 5-HT system. J Pharmacol Exp Ther 218:481–487

    PubMed  CAS  Google Scholar 

  • Muhlbauer HD, Müller-Oerlinghausen B (1982) The fenfluramine test: a simple tool for investigations on lithium-induced changes of serotonergic neurotransmission in manic-depressive patients. Drug Res 32:897

    Google Scholar 

  • Muhlbauer HD, Müller-Oerlinghausen B (1985) Fenfluramine stimulation of serum cortisol in patients with major affective disorders and healthy controls: further evidence for a central serotonergic action of lithium in man. J Neural Transm 61:81–94

    Article  PubMed  CAS  Google Scholar 

  • Murphy DL, Colburn RW, Davis JM, Bunney WE Jr (1969) Stimulation by lithium on monoamine uptake in human platelets. Life Sci 8:1187–1194

    Article  PubMed  CAS  Google Scholar 

  • Müller-Oerlinghausen B (1985) Lithium long-term treatment — does it act via serotonin? Pharmacopsychiatry 18:214–217

    Article  PubMed  Google Scholar 

  • Perez-Cruet J, Tagliamonte A, Tagliamonte P, Gessa GL (1971) Stimulation of serotonin synthesis by lithium. J Pharmacol Exp Ther 178:325–330

    PubMed  CAS  Google Scholar 

  • Plenge P, Mellerup ET (1982)3H-imipramine high-affinity binding sites in rat brain. Effects of imipramine and lithium. Psychopharmacology 77:94–97

    Article  PubMed  CAS  Google Scholar 

  • Poirier MF, Galzin AM, Pimoule C, Schoemaker H, Le Quan Bui KH, Meyer P, Gay C, Loo H, Langer SZ (1988) Short-term lithium administration to healthy volunteers produces long-lasting pronounced changes in platelet serotonin uptake but not imipramine binding. Psychopharmacology 94:521–526

    Article  PubMed  CAS  Google Scholar 

  • Poitou P, Guerinot F, Bohuon C (1974) Effect of lithium on central metabolism of 5-hydroxytryptamine. Psychopharmacologia 38:75–80

    Article  PubMed  CAS  Google Scholar 

  • Prange AJ, Wilson IC, Lynn CW (1974) L-tryptophan in mania: contribution to a permissive hypothesis of affective disorders. Arch Gen Psychiatry 30:56–62

    PubMed  Google Scholar 

  • Price LH (1989) Lithium augmentation of tricyclic antidepressants. In: Extein I (ed) Treatment of tricyclic resistant depression (Progress in Psychiatry Series). American Psychiatric Press, Washington, DC

    Google Scholar 

  • Price LH, Charney DS, Delgado PL, Heninger GR (1989) Lithium treatment and serotonergic function: neuroendocrine and behavioral responses to intravenousl-tryptophan in affective disorder patients. Arch Gen Psychiatry 46:13–19

    PubMed  CAS  Google Scholar 

  • Reches A, Liu KP, Karpiak SE, Fahn S, Cooper TB, Suckow R, Jackson V, Tamir H (1985) Serotonin depletion induced by reserpine is attenuated by prophylactic administration of lithium. Eur J Pharmacol 113:225–231

    Article  PubMed  CAS  Google Scholar 

  • Rudorfer MV, Karoum F, Ross RJ, Potter WZ, Linnoila M (1985) Differences in lithium effects in depressed and healthy subjects. Clin Pharmacol Ther 37:66–71

    Article  PubMed  CAS  Google Scholar 

  • Saldate C, Orrego F (1975) Electrically induced release of (3H)5-hydroxytryptamine from neocortical slices in vitro: influence of calcium but not of lithium ions. Brain Res 99:184–188

    Article  PubMed  CAS  Google Scholar 

  • Sanders-Bush E, Conn PJ (1987) Neurochemistry of serotonin neuronal systems: consequences of serotonin receptor activation. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 95–103

    Google Scholar 

  • Sangdee C, Franz DN (1980) Lithium enhancement of central 5-HT transmission induced by 5-HT precursors. Biol Psychiatry 15:59–75

    PubMed  CAS  Google Scholar 

  • Schubert J (1973) Effect of chronic lithium treatment on monoamine metabolism in rat brain. Psychopharmacologia 32:301–311

    Article  PubMed  CAS  Google Scholar 

  • Scott M, Reading HW, London JB (1979) Studies on human blood platelets in affective disorder. Psychopharmacology 50:131–135

    Article  Google Scholar 

  • Segal M (1974) Lithium and the monoamine neurotransmitters in the rat hippocampus. Nature 250:71–73

    Article  PubMed  CAS  Google Scholar 

  • Sheard MH, Aghajanian GK (1969) Neuronally activated metabolism of brain serotonin: effect of lithium. Life Sci 9:285–290

    Article  Google Scholar 

  • Shukla GS (1985) Combined lithium and valproate treatment and subsequent withdrawal: serotonergic mechanism of their interaction in discrete brain regions. J Neuropsychopharmacol Biol Psychiatry 9:153–156

    Article  CAS  Google Scholar 

  • Siever LJ, Davis KL (1985) Overview: toward a dysregulation hypothesis of depression. Am J Psychiatry 142:1017–1031

    PubMed  CAS  Google Scholar 

  • Siever LJ, Murphy DL, Slater S, de la Vega E, Leppere S (1984) Plasma prolactin changes following fenfluramine in depressed patients compared to controls: an evaluation of central serotonergic responsivity in depression. Life Sci 34:1029–1039

    Article  PubMed  CAS  Google Scholar 

  • Sjöström R, Roos B-E (1972) 5-Hydroxyindolacetic acid and homovanillic acid in cerebrospinal fluid in manic-depressive psychosis. Eur J Clin Pharmacol 4:170–176

    Article  PubMed  Google Scholar 

  • Slater S, de la Vega CE, Skyler J, Murphy DL (1976) Plasma prolactin stimulation by fenfluramine and amphetamine. Psychopharmacol Bull 12:26–27

    PubMed  CAS  Google Scholar 

  • Stahl SM (1977) The human platelet. A diagnostic and research tool for the study of biogenic amines in psychiatric and neurologic disorders. Arch Gen Psychiatry 34:509–516

    PubMed  CAS  Google Scholar 

  • Stahl SM, Woo DJ, Mefford IN, Berger PA, Ciaranello RD (1983) Hyperserotonemia and platelet serotonin uptake and release in schizophrenia and affective disorder. Am J Psychiatry 140:26–30

    PubMed  CAS  Google Scholar 

  • Swann AC, Heninger GR, Marini JL, Sheard MH, Maas JW (1980) Lithium effects on high-affinity tryptophan uptake: evidence against a stabilization mechanism. Brain Res 194:287–292

    Article  PubMed  CAS  Google Scholar 

  • Swann AC, Heninger GR, Roth RH, Maas JW (1986) Differential effects of short and long term lithium on tryptophan uptake and serotonergic function in cat brain. Life Sci 28:247–354

    Google Scholar 

  • Swann AC, Koslow SH, Katz MM, Maas JW, Javaid J, Secunda S, Robins E (1987) Lithium carbonate treatment of mania: cerebrospinal fluid and urinary monoamine metabolites and treatment outcome. Arch Gen Psychiatry 44:345–354

    PubMed  CAS  Google Scholar 

  • Tagliamonte A, Tagliamonte P, Perez-Cruet J, Stern S, Gessa GL (1971) Effect of psychotropic drugs on tryptophan concentration in the rat brain. J Pharmacol Exp Ther 177:475–480

    PubMed  CAS  Google Scholar 

  • Treiser SL, Cascio CS, O'Donohue TL, Thoa NB, Jacobowitz DM, Kellar KJ (1981) Lithium increases serotonin release and decreases serotonin receptors in the hippocampus. Science 213:1529–1531

    Article  PubMed  CAS  Google Scholar 

  • Tuomisto J, Tukiainen E (1977) Decreased uptake of 5-hydroxytryptamine in blood platelets from depressed patients. Nature 262:596–598

    Article  Google Scholar 

  • Vale AL, Ratcliffe F (1987) Effect of lithium administration on rat brain 5-hydroxyindole levels in a possible animal model for mania. Psychopharmacology 91:352–355

    Article  PubMed  CAS  Google Scholar 

  • Waldmeier PC (1987) Is there a common denominator for the antimanic effect of lithium and anticonvulsants? Pharmacopsychiatry 20:37–47

    Article  PubMed  CAS  Google Scholar 

  • Wang HY, Friedman E (1988) Chronic lithium: desensitization of auto receptors mediating serotonin release. Psychopharmacology 94:312–314

    PubMed  CAS  Google Scholar 

  • Wielosz M, Kleinrok Z (1979) Lithium-induced head twitches in rats. J Pharm Pharmacol 31:410–411

    Article  PubMed  CAS  Google Scholar 

  • Wilk S, Shopsin B, Gershon S, Suhl M (1972) Cerebrospinal fluid levels of MHPG in affective disorders. Nature 235:440–441

    Article  PubMed  CAS  Google Scholar 

  • Wood AJ, Goodwin GM (1987) A review of the biochemical and neuropharmacological actions of lithium. Psychol Med 17:579–600

    Article  PubMed  CAS  Google Scholar 

  • Wood K, Swade C, Abou-Saleh MT, Coppen A (1985) Apparent supersensitivity of platelet 5-HT receptors in lithium-treated patients. J Affective Disord 8:69–72

    Article  CAS  Google Scholar 

  • Yamada K, Furukawa T (1979) Serotonergic function in mouse head twitches induced by lithium and reserpine. Psychopharmacology 61:255–260

    Article  PubMed  CAS  Google Scholar 

  • Yocca FD, de Paul Lynch V, Friedman E (1983) Effect of chronic lithium treatment on rat pineal rhythms: N-acetyltransferase, N-acetylserotonin and melatonin. J Pharmacol Exp Ther 226:733–737

    PubMed  CAS  Google Scholar 

  • Yuwiler A, Bennett BL, Brammer GL, Geller E (1979) Lithium treatment and tryptophan transport through the blood-brain barrier. Biochem Pharmacol 28:2709–2712

    Article  PubMed  CAS  Google Scholar 

  • Zohar J, Aulakh CS, Wozniak K, Murphy DL (1986) Short term treatment with lithium potentiates the anorectic effect ofm-chlorphenylpiperazine (mCPP) and fenfluramine while long term lithium attenuates m-CPP induced anorexia. Soc Neurosci Abstr 16:475

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, L.H., Charney, D.S., Delgado, P.L. et al. Lithium and serotonin function: implications for the serotonin hypothesis of depression. Psychopharmacology 100, 3–12 (1990). https://doi.org/10.1007/BF02245781

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245781

Key words

Navigation