Skip to main content
Log in

Adeno-associated virus-based vectors in gene therapy

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Adeno-associated virus (AAV) vectors were shown capable of high efficiency transduction of both dividing and nondividing cells and tissues. AAV-mediated transduction leads to stable, long-term transgene expression in the absence of apparent immune response. These properties and the broad host range of AAV vectors indicate that they constitute a powerful tool for gene therapy purposes. An additional potential benefit of AAV vectors is their ability to integrate site-specifically in the presence of Rep proteins which can be expressed transiently, thus limiting their suspected adverse effects. The major restrictions of AAV as vectors are their limited genetic capacity and strict packaging size constraint of less than 5 kb. Another difficulty is the labor-intensive and expensive procedure for the production and packaging of recombinant AAV vectors. The major benefits and drawbacks of AAV vectors and advances made in the past 3 years are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afione SA, Conrad CK, Kearns WG, Chunduru S, Adams R, Reynolds TC, Guggino WB, Cutting GR, Carter BJ, Flotte TR. In vivo model of adeno-associated virus vector persistence and rescue. J Virol 70:3235–3241;1996.

    Google Scholar 

  2. Alexander IE, Russell DW, Miller AD. DNA-damaging agents greatly increase the transduction of nondividing cells by adeno-associated virus vectors. J Virol 68:8282–8287;1994.

    Google Scholar 

  3. Alexander IE, Russell DW, Spence AM, Miller AD. Effects of gamma irradiation on the transduction of dividing and nondividing cells in brain and muscle of rats by adeno-associated virus vectors. Hum Gene Ther 7:841–850;1996.

    Google Scholar 

  4. Allgood ND, Silhavy TJ. Illegitimate recombination in bacteria. In: Kucherlapati R, Smith GR, eds. Genetic Recombination. Washington, American Society for Microbiology, 309–330;1988.

    Google Scholar 

  5. Balague C, Kalla M, Zhang WW. Adeno-associated virus Rep78 protein and terminal repeats enhance integration of DNA sequences into the cellular genome. J Virol 71:3299–3306;1997.

    Google Scholar 

  6. Barr E, Leiden JM. Systemic delivery of recombinant proteins by genetically modified myoblasts. Science 254:1507–1509;1991.

    Google Scholar 

  7. Bartlett JS, Samulski RJ, McCown TJ. Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther 9:1181–1186;1998.

    Google Scholar 

  8. Bartlett RJ, Secore SL, Singer JT, Bodo M, Sharma K, Ricordi C. Long-term expression of a fluorescent reporter gene via direct injection of plasmid vector into mouse skeletal muscle: Comparison of human creatine kinase and CMV promoter expression levels in vivo. Cell Transplant 5:411–419;1996.

    Google Scholar 

  9. Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL. Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA 95:15603–15607;1998.

    Google Scholar 

  10. Beaton A, Palumbo P, Berns KI. Expression from the adeno-associated virus p5 and p19 promoters is negatively regulated in trans by the rep protein. J Virol 63:4450–4454;1989.

    Google Scholar 

  11. Berns KI, Giraud C. Adenovirus and adeno-associated virus as vectors for gene therapy. Ann NY Acad Sci 772:95–104;1995.

    Google Scholar 

  12. Berns KI, Giraud C. Biology of adeno-associated virus. Curr Top Microbiol Immunol 218:1–23;1996.

    Google Scholar 

  13. Berns KI, Hauswirth WW. Adeno-associated viruses. Adv Virus Res 25:407–449;1979.

    Google Scholar 

  14. Berns KI, Linden RM. The cryptic life style of adeno-associated virus. Bioessays 17:237–245;1995.

    Google Scholar 

  15. Bertran J, Yang Y, Hargrove P, Vanin EF, Nienhuis AW. Targeted integration of a recombinant globin gene adeno-associated viral vector into human chromosome 19. Ann NY Acad Sci 850:163–177;1998.

    Google Scholar 

  16. Bohenzky RA, LeFebvre RB, Berns KI. Sequence and symmetry requirements within the internal palindromic sequences of the adeno-associated virus terminal repeat. Virology 166:316–327;1988.

    Google Scholar 

  17. Bohl D, Salvetti A, Moullier P, Heard JM. Control of erythropoietin delivery by doxycycline in mice after intramuscular injection of adeno-associated vector. Blood 92:1512–1517;1998.

    Google Scholar 

  18. Botquin V, Cid-Arregui A, Schlehofer JR. Adeno-associated virus type 2 interferes with early development of mouse embryos. J Gen Virol 75:2655–2662;1994.

    Google Scholar 

  19. Carter BJ. Adeno-associated virus vectors. Curr Opin Biotechnol 3:533–539;1992.

    Google Scholar 

  20. Carter BJ, Flotte TR. Development of adeno-associated virus vectors for gene therapy of cystic fibrosis. Curr Top Microbiol Immunol 218:119–144;1996.

    Google Scholar 

  21. Chamberlin NL, Du B, de Lacalle S, Saper CB. Recombinant adeno-associated virus vector: Use for transgene expression and anterograde tract tracing in the CNS. Brain Res 793:169–175;1998.

    Google Scholar 

  22. Chang LS, Shi Y, Shenk T. Adeno-associated virus P5 promoter contains an adenovirus E1A-inducible element and a binding site for the major late transcription factor. J Virol 63:3479–3488;1989.

    Google Scholar 

  23. Chen H, McCarty DM, Bruce AT, Suzuki K. Gene transfer and expression in oligodendrocytes under the control of myelin basic protein transcriptional control region mediated by adeno-associated virus. Gene Ther 5:50–58;1998.

    Google Scholar 

  24. Cheung AK, Hoggan MD, Hauswirth WW, Berns KI. Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells. J Virol 33:739–748;1980.

    Google Scholar 

  25. Chiorini JA, Kim F, Yang L, Kotin RM. Cloning and characterization of adeno-associated virus type 5. J Virol 73:1309–1319;1999.

    Google Scholar 

  26. Chiorini JA, Wiener SM, Yang L, Smith RH, Safer B, Kilcoin NP, Liu Y, Urcelay E, Kotin RM. The roles of AAV Rep proteins in gene expression and targeted integration. Curr Top Microbiol Immunol 218:25–33;1996.

    Google Scholar 

  27. Chiorini JA, Yang L, Liu Y, Safer B, Kotin RM. Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J Virol 71:6823–6833;1997.

    Google Scholar 

  28. Clark KR, Liu X, McGrath JP, Johnson PR. Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum Gene Ther 10:1031–1039;1999.

    Google Scholar 

  29. Clark KR, Sferra TJ, Johnson PR. Recombinant adeno-associated viral vectors mediate long-term transgene expression in muscle. Hum Gene Ther 8:659–669;1997.

    Google Scholar 

  30. Clark KR, Voulgaropoulou F, Fraley DM, Johnson PR. Cell lines for the production of recombinant adeno-associated virus. Hum Gene Ther 6:1329–1341;1995.

    Google Scholar 

  31. Cockley KD, Rapp F. Complementation for replication by unrelated animal viruses containing DNA genomes. Microbiol Rev 51:431–438;1987.

    Google Scholar 

  32. Conrad CK, Allen SS, Afione SA, Reynolds TC, Beck SE, Fee-Maki M, Barrazza-Ortiz X, Adams R, Askin FB, Carter BJ, Guggino WB, Flotte TR. Safety of single-dose administration of an adeno-associated virus (AAV)-CFTR vector in the primate lung. Gene Ther 3:658–668;1996.

    Google Scholar 

  33. Costello E, Saudan P, Winocour E, Pizer L, Beard P. High mobility group chromosomal protein 1 binds to the adeno-associated virus replication protein (Rep) and promotes Rep-mediated site-specific cleavage of DNA, ATPase activity and transcriptional repression. EMBO J 16:5943–5954;1997.

    Google Scholar 

  34. d'Alencon E, Petranovis M, Michel B, Noirot P, Aucounturier A, Uzest M, Ehrlich SD. Copy-choice illegitimate DNA recombination revisited. EMBO J 13:2725–2734;1994.

    Google Scholar 

  35. Daly TM, Okuyama T, Vogler C, Haskins ME, Muzyczka N, Sands MS. Neonatal intramuscular injection with recombinant adeno-associated virus results in prolonged beta-glucuronidase expression in situ and correction of liver pathology in mucopolysaccharidosis type VII mice. Hum Gene Ther 10:85–94;1999.

    Google Scholar 

  36. de Fiebre CM, Wu P, Notabartolo D, Millard WJ, Meyer EM. Differential adenoassociated virus vector-driven expression of a neuropeptide Y gene in primary rat brain astroglial cultures after transfection with Sendai virosomes versus lipofectin. Neurochem Res 19:643–648;1994.

    Google Scholar 

  37. Dhawan J, Pan LC, Pavlath GK, Travis MA, Lanctot AM, Blau HM. Systemic delivery of human growth hormone by injection of genetically engineered myoblasts. Science 254:1509–1512;1991.

    Google Scholar 

  38. Doll RF, Crandall JE, Dyer CA, Aucoin JM, Smith FI. Comparison of promoter strengths on gene delivery into mammalian brain cells using AAV vectors. Gene Ther 3:437–447;1996.

    Google Scholar 

  39. Duan D, Sharma P, Dudus L, Zhang Y, Sanlioglu S, Yan Z, Yue Y, Ye Y, Lester R, Yang J, Fisher KJ, Engelhardt JF. Formation of adeno-associated virus circular genomes is differentially regulated by adenovirus E4 ORF6 and E2a gene expression. J Virol 73:161–169;1999.

    Google Scholar 

  40. Duan D, Sharma P, Yang J, Yue Y, Dudus L, Zhang Y, Fisher KJ, Engelhardt JF. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 72:8568–8577;1998.

    Google Scholar 

  41. Duan D, Yue Y, Yan Z, McCray PB Jr, Engelhardt JF. Polarity influences the efficiency of recombinant adenoassociated virus infection in differentiated airway epithelia. Hum Gene Ther 9:2761–2776;1998.

    Google Scholar 

  42. Dubielzig R, King J, Kleinschmidt JA: AAV-2 DNA encapsidation (abstract 1.4). 1st Parvovirus Euroconference, Granada, 1999.

  43. Dudus L, Anand V, Acland GM, Chen SJ, Wilson JM, Fisher KJ, Maguire AM, Bennett J. Persistent transgene product in retina, optic nerve and brain after intraocular injection of rAAV. Vision Res 39:2545–2553;1999.

    Google Scholar 

  44. Fan L, Drew J, Dunckley MG, Owen JS, Dickson G. Efficient coexpression and secretion of anti-atherogenic human apolipoprotein AI and lecithin-cholesterol acyltransferase by cultured muscle cells using adeno-associated virus plasmid vectors. Gene Ther 5:1434–1440;1998.

    Google Scholar 

  45. Fan PD, Dong JY. Replication of rep-cap genes is essential for the high-efficiency production of recombinant AAV. Hum Gene Ther 8:87–98;1997.

    Google Scholar 

  46. Ferrari FK, Samulski T, Shenk T, Samulski RJ. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 70:3227–3234;1996.

    Google Scholar 

  47. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 70:520–532;1996.

    Google Scholar 

  48. Fisher KJ, Jooss K, Alston J, Yang Y, Haecker SE, High K, Pathak R, Raper SE, Wilson JM. Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 3:306–312;1997.

    Google Scholar 

  49. Fisher KJ, Kelley WM, Burda JF, Wilson JM. A novel adenovirus-adeno-associated virus hybrid vector that displays efficient rescue and delivery of the AAV genome. Hum Gene Ther 7:2079–2087;1996.

    Google Scholar 

  50. Fisher-Adams G, Wong KK Jr, Podsakoff G, Forman SJ, Chatterjee S. Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction. Blood 88:492–504;1996.

    Google Scholar 

  51. Flotte TR, Afione SA, Conrad C, McGrath SA, Solow R, Oka H, Zeitlin PL, Guggino WB, Carter BJ. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci USA 90:10613–10617;1993.

    Google Scholar 

  52. Flotte TR, Afione SA, Solow R, Drumm ML, Markakis D, Guggino WB, Zeitlin PL, Carter BJ. Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter. J Biol Chem 268:3781–3790;1993.

    Google Scholar 

  53. Flotte TR, Afione SA, Zeitlin PL. Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am J Respir Cell Mol Biol 11:517–521;1994.

    Google Scholar 

  54. Flotte TR, Carter BJ. Adeno-associated virus vectors for gene therapy. Gene Ther 2:357–362;1995.

    Google Scholar 

  55. Flotte TR, Carter BJ. In vivo gene therapy with adeno-associated virus vectors for cystic fibrosis. Adv Pharmacol 40:85–101;1997.

    Google Scholar 

  56. Fraefel C, Jacoby DR, Lage C, Hilderbrand H, Chou JY, Alt FW, Breakefield XO, Majzoub JA. Gene transfer into hepatocytes mediated by helper virus-free HSV/AAV hybrid vectors. Mol Med 3:813–825;1997.

    Google Scholar 

  57. Freese A, Kaplitt MG, O'Connor WM, Abbey M, Langer D, Leone P, O'Connor MJ, During MJ. Direct gene transfer into human epileptogenic hippocampal tissue with an adeno-associated virus vector: Implications for a gene therapy approach to epilepsy. Epilepsia 38:759–766;1997.

    Google Scholar 

  58. Gao GP, Qu G, Faust LZ, Engdahl RK, Xiao W, Hughes JV, Zoltick PW, Wilson JM. High-titer adeno-associated viral vectors from a Rep/Cap cell line and hybrid shuttle virus. Hum Gene Ther 9:2353–2362;1998.

    Google Scholar 

  59. Giraud C, Winocour E, Berns KI. Site-specific integration by adeno-associated virus is directed by a cellular DNA sequence. Proc Natl Acad Sci USA 91:10039–10043;1994.

    Google Scholar 

  60. Grimm D, Kern A, Rittner K, Kleinschmidt JA. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 9:2745–2760;1998.

    Google Scholar 

  61. Guy J, Qi X, Hauswirth WW. Adeno-associated viral-mediated catalase expression suppresses optic neuritis in experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 95:13847–13852;1998.

    Google Scholar 

  62. Guy J, Qi X, Muzyczka N, Hauswirth WW. Reporter expression persists 1 year after adeno-associated virus- mediated gene transfer to the optic nerve. Arch Ophthalmol 117:929–937;1999.

    Google Scholar 

  63. Halbert CL, Alexander IE, Wolgamot GM, Miller AD. Adeno-associated virus vectors transduce primary cells much less efficiently than immortalized cells. J Virol 69:1473–1479;1995.

    Google Scholar 

  64. Handa H, Shiroki K, Shimojo H. Establishment and characterization of KB cell lines latently infected with adeno-associated virus type 1. Virology 82:84–92;1977.

    Google Scholar 

  65. Hargrove PW, Vanin EF, Kurtzman GJ, Nienhuis AW. High-level globin gene expression mediated by a recombinant adeno-associated virus genome that contains the 3′ gamma globin gene regulatory element and integrates as tandem copies in erythroid cells. Blood 89:2167–2175;1997.

    Google Scholar 

  66. Hermens WT, ter Brake O, Dijkhuizen PA, Sonnemans MA, Grimm D, Kleinschmidt JA, Verhaagen J. Purification of recombinant adeno-associated virus by iodixanol gradient ultracentrifugation allows rapid and reproducible preparation of vector stocks for gene transfer in the nervous system. Hum Gene Ther 10:1885–1891;1999.

    Google Scholar 

  67. Hermonat PL, Muzyczka N. Use of adeno-associated virus as a mammalian DNA cloning vector: Transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA 81:6466–6470;1984.

    Google Scholar 

  68. Herzog RW, Hagstrom JN, Kung SH, Tai SJ, Wilson JM, Fisher KJ, High KA. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci USA 94:5804–5809;1997.

    Google Scholar 

  69. Herzog RW, Yang EY, Couto LB, Hagstrom JN, Elwell D, Fields PA, Burton M, Bellinger DA, Read MS, Brinkhous KM, Podsakoff GM, Nichols TC, Kurtzman GJ, High KA. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 5:56–63;1999.

    Google Scholar 

  70. Johnston KM, Jacoby D, Pechan PA, Fraefel C, Borghesani P, Schuback D, Dunn RJ, Smith FI, Breakefield XO. HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum Gene Ther 8:359–370;1997.

    Google Scholar 

  71. Kaplitt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O'Malley KL, During MJ. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 8:148–154;1994.

    Google Scholar 

  72. Kaplitt MG, Xiao X, Samulski RJ, Li J, Ojamaa K, Klein IL, Makimura H, Kaplitt MJ, Strumpf RK, Diethrich EB. Long-term gene transfer in porcine myocardium after coronary infusion of an adeno-associated virus vector. Ann Thorac Surg 62:1669–1676;1996.

    Google Scholar 

  73. Kearns WG, Afione SA, Fulmer SB, Pang MC, Erikson D, Egan M, Landrum MJ, Flotte TR, Cutting GR. Recombinant adeno-associated virus (AAV-CFTR) vectors do not integrate in a site-specific fashion in an immortalized epithelial cell line. Gene Ther 3:748–755;1996.

    Google Scholar 

  74. Keir SD, Miller J, Yu G, Hamilton R, Samulski RJ, Xiao X, Tornatore C. Efficient gene transfer into primary and immortalized human fetal glial cells using adeno-associated virus vectors: Establishment of a glial cell line with a functional CD4 receptor. J Neurovirol 3:322–330;1997.

    Google Scholar 

  75. Kessler PD, Podsakoff GM, Chen X, McQuiston SA, Colosi PC, Matelis LA, Kurtzman GJ, Byrne BJ. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA 93:14082–14087;1996.

    Google Scholar 

  76. Kibbe M, Billiar T, Tzeng E. Gene therapy and vascular disease. Adv Pharmacol 46:85–150;1999.

    Google Scholar 

  77. Klein RL, Meyer EM, Peel AL, Zolotukhin S, Meyers C, Muzyczka N, King MA. Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by recombinant adeno-associated virus vectors. Exp Neurol 150:183–194;1998.

    Google Scholar 

  78. Klein-Bauernschmitt P, zur Hausen H, Schlehofer JR. Induction of differentiation-associated changes in established human cells by infection with adeno-associated virus type 2. J Virol 66:4191–4200;1992.

    Google Scholar 

  79. Koeberl DD, Alexander IE, Halbert CL, Russell DW, Miller AD. Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc Natl Acad Sci USA 94:1426–1431;1997.

    Google Scholar 

  80. Kotin RM. Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther 5:793–801;1994.

    Google Scholar 

  81. Kotin RM, Berns KI. Organization of adeno-associated virus DNA in latently infected Detroit 6 cells. Virology 170:460–467;1989.

    Google Scholar 

  82. Kotin RM, Linden RM, Berns KI. Characterization of a preferred site on human chromo-some 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J 11:5071–5078;1992.

    Google Scholar 

  83. Kotin RM, Menninger JC, Ward DC, Berns KI. Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter. Genomics 10:831–834;1991.

    Google Scholar 

  84. Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA, McLaughlin S, Muzyczka N, Rocchi M, Berns KI. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 87:2211–2215;1990.

    Google Scholar 

  85. Labow MA, Hermonat PL, Berns KI. Positive and negative autoregulation of the adeno-associated virus type 2 genome. J Virol 60:251–258;1986.

    Google Scholar 

  86. Lamartina S, Roscilli G, Rinaudo D, Delmastro P, Toniatti C. Lipofection of purified adeno-associated virus Rep68 protein: Toward a chromosome-targeting nonviral particle. J Virol 72:7653–7658;1998.

    Google Scholar 

  87. Lebkowski JS, Okarma TB, Philip R. The challenges of recombinant adeno-associated virus manufacturing: Alternative use of adeno-associated virus plasmid/liposome complexes for gene therapy applications. Curr Top Microbiol Immunol 218:51–59;1996.

    Google Scholar 

  88. Lefebvre RB, Riva S, Berns KI. Conformation takes precedence over sequence in adeno-associated virus DNA replication. Mol Cell Biol 4:1416–1419;1984.

    Google Scholar 

  89. Leppard KN. E4 gene function in adenovirus, adenovirus vector and adeno-associated virus infections. J Gen Virol 78:2131–2138;1997.

    Google Scholar 

  90. Li J, Dressman D, Tsao YP, Sakamoto A, Hoffman EP, Xiao X. rAAV vector-mediated sarcogylcan gene transfer in a hamster model for limb girdle muscular dystrophy. Gene Ther 6:74–82;1999.

    Google Scholar 

  91. Li J, Samulski RJ, Xiao X. Role for highly regulated rep gene expression in adeno-associated virus vector production. J Virol 71:5236–5243;1997.

    Google Scholar 

  92. Liu XL, Clark KR, Johnson PR. Production of recombinant adeno-associated virus vectors using a packaging cell line and a hybrid recombinant adenovirus. Gene Ther 6:293–299;1999.

    Google Scholar 

  93. Lo WD, Qu G, Sferra TJ, Clark R, Chen R, Johnson PR. Adeno-associated virus-mediated gene transfer to the brain: Duration and modulation of expression. Hum Gene Ther 10:201–213;1999.

    Google Scholar 

  94. Lynch CM, Hara PS, Leonard JC, Williams JK, Dean RH, Geary RL. Adeno-associated virus vectors for vascular gene delivery. Circ Res 80:497–505;1997.

    Google Scholar 

  95. Maeda Y, Ikeda U, Ogasawara Y, Urabe M, Takizawa T, Saito T, Colosi P, Kurtzman G, Shimada K, Ozawa K. Gene transfer into vascular cells using adeno-associated virus (AAV) vectors. Cardiovasc Res 35:514–521;1997.

    Google Scholar 

  96. Mandel RJ, Spratt SK, Snyder RO, Leff SE. Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson's disease in rats. Proc Natl Acad Sci USA 94:14083–14088;1997.

    Google Scholar 

  97. Matsushita T, Elliger S, Elliger C, Podsakoff G, Villarreal L, Kurtzman GJ, Iwaki Y, Colosi P. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther 5:938–945;1998.

    Google Scholar 

  98. McCarty DM, Pereira DJ, Zolotukhin I, Zhou X, Ryan JH, Muzyczka N. Identification of linear DNA sequences that specifically bind the adeno-associated virus Rep protein. J Virol 68:4988–4997;1994.

    Google Scholar 

  99. McCarty DM, Ryan JH, Zolotukhin S, Zhou X, Muzyczka N. Interaction of the adeno-associated virus Rep protein with a sequence within the A palindrome of the viral terminal repeat. J Virol 68:4998–5006;1994.

    Google Scholar 

  100. McCown TJ, Xiao X, Li J, Breese GR, Samulski RJ. Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 713:99–107;1996.

    Google Scholar 

  101. McLaughlin SK, Collis P, Hermonat PL, Muzyczka N. Adeno-associated virus general transduction vectors: Analysis of proviral structures. J Virol 62:1963–1973;1988.

    Google Scholar 

  102. Mendelson E, Smith MG, Carter BJ. Expression and rescue of a nonselected marker from an integrated AAV vector. Virology 166:154–165;1988.

    Google Scholar 

  103. Mizuno M, Yoshida J, Colosi P, Kurtzman G. Adeno-associated virus vector containing the herpes simplex virus thymidine kinase gene causes complete regression of intracerebrally implanted human gliomas in mice, in conjunction with ganciclovir administration. Jpn J Cancer Res 89:76–80;1998.

    Google Scholar 

  104. Mohuczy D, Gelband CH, Phillips MI. Antisense inhibition of AT1 receptor in vascular smooth muscle cells using adeno-associated virus-based vector. Hypertension 33:354–359;1999.

    Google Scholar 

  105. Monahan PE, Samulski RJ, Tazelaar J, Xiao X, Nichols TC, Bellinger DA, Read MS, Walsh CE. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Ther 5:40–49;1998.

    Google Scholar 

  106. Muramatsu S, Mizukami H, Young NS, Brown KE. Nucleotide sequencing and generation of an infectious clone of adeno-associated virus 3. Virology 221:208–217;1996.

    Google Scholar 

  107. Muzyczka N. Adeno-associated virus (AAV) vectors: Will they work? J Clin Invest 94:1351;1994.

    Google Scholar 

  108. Muzyczka N. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol 158:97–129;1992.

    Google Scholar 

  109. Nakai H, Herzog RW, Hagstrom JN, Walter J, Kung SH, Yang EY, Tai SJ, Iwaki Y, Kurtzman GJ, Fisher KJ, Colosi P, Couto LB, High KA. Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood 91:4600–4607;1998.

    Google Scholar 

  110. Nakai H, Iwaki Y, Kay MA, Couto LB. Isolation of recombinant adeno-associated virus vector-cellular DNA junctions from mouse liver. J Virol 73:5438–5447;1999.

    Google Scholar 

  111. Nguyen JT, Wu P, Clouse ME, Hlatky L, Terwilliger EF. Adeno-associated virus-mediated delivery of antiangiogenic factors as an antitumor strategy. Cancer Res 58:5673–5677;1998.

    Google Scholar 

  112. Ni TH, McDonald WF, Zolotukhin I, Melendy T, Waga S, Stillman B, Muzyczka N. Cellular proteins required for adeno-associated virus DNA replication in the absence of adenovirus coinfection. J Virol 72:2777–2787;1998.

    Google Scholar 

  113. Nienhuis AW, Bertran J, Hargrove P, Vanin E, Yang Y. Gene transfer into hematopoietic cells. Stem Cells 15 Suppl 1:123–134;1997.

    Google Scholar 

  114. Ohi S, Kim BC. Synthesis of human globin polypeptides mediated by recombinant adeno-associated virus vectors. J Pharm Sci 85:274–281;1996.

    Google Scholar 

  115. Osborne WR, Ramesh N, Lau S, Clowes MM, Dale DC, Clowes AW. Gene therapy for long-term expression of erythropoietin in rats. Proc Natl Acad Sci USA 92:8055–8058;1995.

    Google Scholar 

  116. Philip R, Brunette E, Kilinski L, Murugesh D, McNally MA, Ucar K, Rosenblatt J, Okarma TB, Lebkowski JS. Efficient and sustained gene expression in primary T lymphocytes and primary and cultured tumor cells mediated by adeno-associated virus plasmid DNA complexed to cationic liposomes. Mol Cell Biol 14:2411–2418;1994.

    Google Scholar 

  117. Phillips MI. Gene therapy for hypertension: Antisense inhibition with adeno-associated viral vector delivery targeting angiotensin II type 1-receptor messenger ribonucleic acid. Am J Cardiol 82:60S-62S;1998.

    Google Scholar 

  118. Podsakoff G, Wong KK Jr, Chatterjee S. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors. J Virol 68:5656–5666;1994.

    Google Scholar 

  119. Ponnazhagan S, Yoder MC, Srivastava A. Adeno-associated virus type 2-mediated transduction of murine hematopoietic cells with long-term repopulating ability and sustained expression of a human globin gene in vivo. J Virol 71:3098–3104;1997.

    Google Scholar 

  120. Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 5:71–77;1999.

    Google Scholar 

  121. Qing K, Wang XS, Kube DM, Ponnazhagan S, Bajpai A, Srivastava A. Role of tyrosine phosphorylation of a cellular protein in adeno-associated virus 2-mediated transgene expression. Proc Natl Acad Sci USA 94:10879–10884;1997.

    Google Scholar 

  122. Recchia A, Parks RJ, Lamartina S, Toniatti C, Pieroni L, Palombo F, Ciliberto G, Graham FL, Cortese R, La Monica N, Colloca S. Site-specific integration mediated by a hybrid adenovirus/adeno-associated virus vector. Proc Natl Acad Sci USA 96:2615–2620;1999.

    Google Scholar 

  123. Rolling F, Nong Z, Pisvin S, Collen D. Adeno-associated virus-mediated gene transfer into rat carotid arteries. Gene Ther 4:757–761;1997.

    Google Scholar 

  124. Rubenstein RC, McVeigh U, Flotte TR, Guggino WB, Zeitlin PL. CFTR gene transduction in neonatal rabbits using an adeno-associated virus (AAV) vector. Gene Ther 4:384–392;1997.

    Google Scholar 

  125. Russell DW, Alexander IE, Miller AD. DNA synthesis and topoisomerase inhibitors increase transduction by adeno-associated virus vectors. Proc Natl Acad Sci USA 92:5719–5723;1995.

    Google Scholar 

  126. Russell DW, Miller AD, Alexander IE. Adeno-associated virus vectors preferentially transduce cells in S phase. Proc Natl Acad Sci USA 91:8915–8919;1994.

    Google Scholar 

  127. Rutledge EA, Halbert CL, Russell DW. Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 72:309–319;1998.

    Google Scholar 

  128. Rutledge EA, Russell DW. Adeno-associated virus vector integration junctions. J Virol 71:8429–8436;1997.

    Google Scholar 

  129. Salvetti A, Oreve S, Chadeuf G, Favre D, Cherel Y, Champion-Arnaud P, David-Ameline J, Moullier P. Factors influencing recombinant adeno-associated virus production. Hum Gene Ther 9:695–706;1998.

    Google Scholar 

  130. Samulski RJ, Chang LS, Shenk T. Helper-free stocks of recombinant adeno-associated viruses: Normal integration does not require viral gene expression. J Virol 63:3822–3828;1989.

    Google Scholar 

  131. Samulski RJ, Chang LS, Shenk T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol 61:3096–3101;1987.

    Google Scholar 

  132. Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N, Hunter LA. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 10:3941–3950;1991.

    Google Scholar 

  133. Sanlioglu S, Duan D, Engelhardt JF. Two independent molecular pathways for recombinant adeno-associated virus genome conversion occur after UV-C and E4orf6 augmentation of transduction. Hum Gene Ther 10:591–602;1999.

    Google Scholar 

  134. Schlehofer JR, Ehrbar M, zur Hausen H. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus. Virology 152:110–117;1986.

    Google Scholar 

  135. Schlehofer JR, Heilbronn R, Georg-Fries B, zur Hausen H. Inhibition of initiator-induced SV40 gene amplification in SV40-transformed Chinese hamster cells by infection with a defective parvovirus. Int J Cancer 32:591–595;1983.

    Google Scholar 

  136. Shaughnessy E, Lu D, Chatterjee S, Wong KK. Parvoviral vectors for the gene therapy of cancer. Semin Oncol 23:159–171;1996.

    Google Scholar 

  137. Shelling AN, Smith MG. Targeted integration of transfected and infected adeno-associated virus vectors containing the neomycin resistance gene. Gene Ther 1:165–169;1994.

    Google Scholar 

  138. Shi Y, Seto E, Chang LS, Shenk T. Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein. Cell 67:377–388;1991.

    Google Scholar 

  139. Snyder RO, Miao C, Meuse L, Tubb J, Donahue BA, Lin HF, Stafford DW, Patel S, Thompson AR, Nichols T, Read MS, Bellinger DA, Brinkhous KM, Kay MA. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nat Med 5:64–70;1999.

    Google Scholar 

  140. Snyder RO, Miao CH, Patijn GA, Spratt SK, Danos O, Nagy D, Gown AM, Winther B, Meuse L, Cohen LK, Thompson AR, Kay MA. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 16:270–276;1997.

    Google Scholar 

  141. Snyder RO, Samulski RJ, Muzyczka N. In vitro resolution of covalently joined AAV chromosome ends. Cell 60:105–113;1990.

    Google Scholar 

  142. Snyder RO, Spratt SK, Lagarde C, Bohl D, Kaspar B, Sloan B, Cohen LK, Danos O. Efficient and stable adeno-associated virus-mediated transduction in the skeletal muscle of adult immunocompetent mice. Hum Gene Ther 8:1891–1900;1997.

    Google Scholar 

  143. Song S, Morgan M, Ellis T, Poirier A, Chesnut K, Wang J, Brantly M, Muzyczka N, Byrne BJ, Atkinson M, Flotte TR. Sustained secretion of human alpha-1-antitrypsin from murine muscle transduced with adeno-associated virus vectors. Proc Natl Acad Sci USA 95:14384–14388;1998.

    Google Scholar 

  144. Srivastava A, Lusby EW, Berns KI. Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol 45:555–564;1983.

    Google Scholar 

  145. Summerford C, Bartlett JS, Samulski RJ. AlphaVbeta5 integrin: A co-receptor for adeno-associated virus type 2 infection. Nat Med 5:78–82;1999.

    Google Scholar 

  146. Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 72:1438–1445;1998.

    Google Scholar 

  147. Surosky RT, Urabe M, Godwin SG, McQuiston SA, Kurtzman GJ, Ozawa K, Natsoulis G. Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. J Virol 71:7951–7959;1997.

    Google Scholar 

  148. Svensson EC, Marshall DJ, Woodard K, Lin H, Jiang F, Chu L, Leiden JM. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 99:201–205;1999.

    Google Scholar 

  149. Tang RS. The return of copy-choice in DNA recombination. Bioessays 16:785–788;1994.

    Google Scholar 

  150. Thomson BJ, Weindler FW, Gray D, Schwaab V, Heilbronn R. Human herpesvirus 6 (HHV-6) is a helper virus for adeno-associated virus type 2 (AAV-2) and the AAV-2 rep gene homologue in HHV-6 can mediate AAV-2 DNA replication and regulate gene expression. Virology 204:304–311;1994.

    Google Scholar 

  151. Tratschin JD, Miller IL, Smith MG, Carter BJ. Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol Cell Biol 5:3251–3260;1985.

    Google Scholar 

  152. Tratschin JD, Tal J, Carter BJ. Negative and positive regulation in trans of gene expression from adeno-associated virus vectors in mammalian cells by a viral rep gene product. Mol Cell Biol 6:2884–2894;1986.

    Google Scholar 

  153. Trempe JP. Packaging systems for adeno-associated virus vectors. Curr Top Microbiol Immunol 218:35–50;1996.

    Google Scholar 

  154. Urcelay E, Ward P, Wiener SM, Safer B, Kotin RM. Asymmetric replication in vitro from a human sequence element is dependent on adeno-associated virus Rep protein. J Virol 69:2038–2046;1995.

    Google Scholar 

  155. Vincent KA, Piraino ST, Wadsworth SC. Analysis of recombinant adeno-associated virus packaging and requirements for rep and cap gene products. J Virol 71:1897–1905;1997.

    Google Scholar 

  156. Vincent-Lacaze N, Snyder RO, Gluzman R, Bohl D, Lagarde C, Danos O. Structure of adeno-associated virus vector DNA following transduction of the skeletal muscle. J Virol 73:1949–1955;1999.

    Google Scholar 

  157. Walsh CE, Liu JM, Xiao X, Young NS, Nienhuis AW, Samulski RJ. Regulated high level expression of a human gamma-globin gene introduced into erythroid cells by an adeno-associated virus vector. Proc Natl Acad Sci USA 89:7257–7261;1992.

    Google Scholar 

  158. Walz C, Deprez A, Dupressoir T, Durst M, Rabreau M, Schlehofer JR. Interaction of human papillomavirus type 16 and adeno-associated virus type 2 co-infecting human cervical epithelium. J Gen Virol 78:1441–1452;1997.

    Google Scholar 

  159. Walz C, Schlehofer JR. Modification of some biological properties of HeLa cells containing adeno-associated virus DNA integrated into chromosome 17. J Virol 66:2990–3002;1992.

    Google Scholar 

  160. Walz C, Schlehofer JR, Flentje M, Rudat V, zur Hausen H. Adeno-associated virus sensitizes HeLa cell tumors to gamma rays. J Virol 66:5651–5657;1992.

    Google Scholar 

  161. Wang L, Takabe K, Bidlingmaier SM, Ill CR, Verma IM. Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc Natl Acad Sci USA 96:3906–3910;1999.

    Google Scholar 

  162. Wang XS, Ponnazhagan S, Srivastava A. Rescue and replication of adeno-associated virus type 2 as well as vector DNA sequences from recombinant plasmids containing deletions in the viral inverted terminal repeats: Selective encapsidation of viral genomes in progeny virions. J Virol 70:1668–1677;1996.

    Google Scholar 

  163. Wang XS, Ponnazhagan S, Srivastava A. Rescue and replication signals of the adeno-associated virus 2 genome. J Mol Biol 250:573–580;1995.

    Google Scholar 

  164. Weger S, Wendland M, Kleinschmidt JA, Heilbronn R. The adeno-associated virus type 2 regulatory proteins rep78 and rep68 interact with the transcriptional coactivator PC4. J Virol 73:260–269;1999.

    Google Scholar 

  165. Weitzman MD, Kyostio SR, Kotin RM, Owens RA. Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc Natl Acad Sci USA 91:5808–5812;1994.

    Google Scholar 

  166. Winocour E, Puzis L, Etkin S, Koch T, Danovitch B, Mendelson E, Shaulian E, Karby S, Lavi S. Modulation of the cellular phenotype by integrated adeno-associated virus. Virology 190:316–329;1992.

    Google Scholar 

  167. Xiao W, Chirmule N, Berta SC, McCullough B, Gao G, Wilson JM. Gene therapy vectors based on adeno-associated virus type 1. J Virol 73:3994–4003;1999.

    Google Scholar 

  168. Xiao X, Li J, Samulski RJ. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 70:8098–8108;1996.

    Google Scholar 

  169. Yakinoglu AO, Heilbronn R, Burkle A, Schlehofer JR, zur Hausen H. DNA amplification of adeno-associated virus as a response to cellular genotoxic stress. Cancer Res 48:3123–3129;1988.

    Google Scholar 

  170. Yakobson B, Hrynko TA, Peak MJ, Winocour E. Replication of adeno-associated virus in cells irradiated with UV light at 254 nm. J Virol 63:1023–1030;1989.

    Google Scholar 

  171. Yakobson B, Koch T, Winocour E. Replication of adeno-associated virus in synchronized cells without the addition of a helper virus. J Virol 61:972–981;1987.

    Google Scholar 

  172. Yang CC, Xiao X, Zhu X, Ansardi DC, Epstein ND, Frey MR, Matera AG, Samulski RJ. Cellular recombination pathways and viral terminal repeat hairpin structures are sufficient for adeno-associated virus integration in vivo and in vitro. J Virol 71:9231–9247;1997.

    Google Scholar 

  173. Zhang L, Wang D, Fischer H, Fan PD, Widdicombe JH, Kan YW, Dong JY. Efficient expression of CFTR function with adeno-associated virus vectors that carry shortened CFTR genes. Proc Natl Acad Sci USA 95:10158–10163;1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tal, J. Adeno-associated virus-based vectors in gene therapy. J Biomed Sci 7, 279–291 (2000). https://doi.org/10.1007/BF02253246

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253246

Key Words

Navigation