Skip to main content
Log in

Renal function, renin activity and endogenous vasoactive substances in cirrhosis

  • Published:
The American Journal of Digestive Diseases Aims and scope Submit manuscript

Abstract

Plasma renin activity (PRA), whole blood 5-hydroxytryptamine (5-HT), and 24-hr urinary excretion of catecholamines, metanephrines, and 5-hydroxyindoleacetic acid (5-HIAA) were measured in patients with cirrhosis and various degrees of impairment of renal function. PRA was highest in those with ascites and correlated with glomerular filtration rate (Ccr) and effective renal plasma flow (CPAH). PRA decreased after the renal blood flow was increased by infusion of dopamine, suggesting that increased PRA is the result of renal circulatory impairment in cirrhosis rather than its cause. Further stimulation of the renin-angiotensin system may lead to aggravation of fluid retention in patients with diminished renal blood flow. It is unlikely that increased blood levels of angiotensin, catecholamines, or 5-HT are the cause of the disturbance in renal circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldus WP, Feichter RN, Summerskill WHJ et al: The kidney in cirrhosis. II. Disorders of renal function. Ann Intern Med 60:366–377, 1964

    Google Scholar 

  2. Baldus WP, Summerskill WHJ, Hunt JC, et al: Renal circulation in cirrhosis: Observations based on catheterization of the renal vein. J Clin Invest 43:1090–1097, 1964

    Google Scholar 

  3. Summerskill WHJ: Hepatic failure and the kidney. Gastroenterology 51:94–107, 1966

    Google Scholar 

  4. Ayers CR: Plasma renin activity and renin-substrate concentration in patients with liver disease. Circ Res 20:594–598, 1967

    Google Scholar 

  5. Brown JJ, Davies DL, Lever AF, et al: Variations in plasma renin concentration in several physiological and pathological states. Canad Med Ass J 90:201–206, 1964

    Google Scholar 

  6. Genest J, de Champlain J, Veyrat R, et al: Role of the renin-angiotensin system in various physiological and pathological states. Hypertension 13:97–116, 1965

    Google Scholar 

  7. Laragh JH, Cannon PJ, Bentzel CJ, et al: Angiotensin II, norepinephrine, and renal transport of electrolytes and water in normal man and in cirrhosis with ascites. J Clin Invest 42:1179–1192, 1963

    Google Scholar 

  8. Barnardo DE, Baldus WP, Maher FT: Effects of dopamine on renal function in cirrhosis. Unpublished data

  9. McDonald RH Jr, Goldberg LI, McNay JL, et al: Effect of dopamine in man: Augmentation of sodium excretion, glomerular filtration rate and renal plasma flow. J Clin Invest 43:1116–1124, 1964

    Google Scholar 

  10. Hazelrig CG, Zimon RP, Flock EV, et al: Role of the liver in metabolism of DL-norepinephrine-14C. Amer J Physiol 212:1229–1235, 1967

    Google Scholar 

  11. Wurtman RJ: Catecholamines. New Eng J Med 273:637–646, 693–700, 746–753, 1965

    Google Scholar 

  12. Smythe CM, Nickel JF, Bradley SE: Effect of epinephrine (USP), 1-epinephrine, and 1-norepinephrine on glomerular filtration rate, renal plasma flow, and urinary excretion of sodium, potassium, and water in normal man. J Clin Invest 31:499–506, 1952

    Google Scholar 

  13. Le Moli S, Pagliaro L, Giglio F, et al: Aumento della escrezione urinaria delle catecolamine (adrenalina e noradrenalina) e dell'acido3-metossi-4-idrossi-mandelico (MVA) in soggetti cirrotici. Boll Soc Ital Biol Sper 40:1407–1410, 1964

    Google Scholar 

  14. Le Moli S, Giglio F, Pagliaro L, et al: Aumento delle catecolamine nel sangue arterioso e venoso di soggetti cirrotici. Boll Soc Ital Biol Sper 40:1410–1413, 1964

    Google Scholar 

  15. Shaldon C: Dynamic aspects of portal hypertension. Ann Roy Coll Surg Eng 31:308–329, 1962

    Google Scholar 

  16. Tyce GM, Flock EV, Owen CA Jr: Uptake and metabolism of 5-hydroxytryptamine by the isolated perfused rat liver. Amer J Physiol 215:611–619, 1968

    Google Scholar 

  17. Garattini S, Valzelli L: Serotonin. Amsterdam, Elsevier, 1965, p 138

    Google Scholar 

  18. Magdelaine M, Dreux C, Bonvarlet A, et al: La sérotonine dans l'hypertension portalé: Ses modifications dans le sang avant et après dérivation portale chirurgicale. Presse Med 70:7–8, 1962

    Google Scholar 

  19. Boucher R, Veyrat R, de Champlain J, et al: New procedures for measurement of human plasma angiotensin and renin activity levels. Canad Med Ass J 90:194–201, 1964

    Google Scholar 

  20. Udenfriend S, Weissbach M, Brodie BB: Assay of serotonin and related metabolites, enzymes and drugs, Methods of Biochemical Analysis (Vol 6). Edited by D Glick. New York, Interscience, 1958, pp 95–103

    Google Scholar 

  21. Macfarlane PS, Dalgliesh CE, Dutton RW, et al: Endocrine aspects of argentaffinoma with special reference to use of urinary 5-hydroxyindoleacetic acid estimations in diagnosis. Scot Med J 1:148–155, 1956

    Google Scholar 

  22. Sobel C, Henry RJ: Determination of catecholamines (adrenalin and noradrenalin) in urine and tissue. Amer J Clin Path 27:240–245, 1957

    Google Scholar 

  23. Pisano JJ: A simple analysis for normetanephrine and metanephrine in urine. Clin Chim Acta 5:406–414, 1960

    Google Scholar 

  24. Kaneko Y, Ikeda T, Takeda T, et al: Renin release during acute reduction of arterial pressure in normotensive subjects and patients with renovascular hypertension. J Clin Invest 46:705–716, 1967

    Google Scholar 

  25. Wilcoxon F: Individual comparisons by ranking methods. Biometrics 1:80–83, 1945

    Google Scholar 

  26. de Champlain J, Genest J, Veyratt R, et al: Factors controlling renin in man. Arch Intern Med 117:355–363, 1966

    Google Scholar 

  27. Waalkes TP: The determination of serotonin (5-hydroxytryptamine) in human blood. J Lab Clin Med 53:824–829, 1959

    Google Scholar 

  28. Sheps SG, Tyce GM, Flock EV, et al: Current experience in the diagnosis of pheochromocytoma. Circulation 34:473–483, 1966

    Google Scholar 

  29. Atuk NO, Ayers CR, Westfall V: Effect of dopamine on blood pressure and urinary excretion of catecholamines in man (abst). Clin Res 16:90, 1968

    Google Scholar 

  30. Vander AJ, Luciano JR: Neural and humoral control of renin release in salt depletion. Circ Res 21:Suppl 2:69–75, 1967

    Google Scholar 

  31. Barnardo DE, Strong CG, Baldus WP: Failure of the cirrhotic liver to inactivate renin: Evidence for a splanchnic source of renin-like activity. J Lab Clin Med 74:495–506, 1969

    Google Scholar 

  32. Laragh JH, Ames RP: Physiology of body water and electrolytes in hepatic disease. Med Clin N Amer 47:587–606, 1963

    Google Scholar 

  33. Joly JG, Leduc J, Bernier J, et al: Catecholamine levels in portal, hepatic, and systemic venous blood in portal hypertension. Lancet 2:121–123, 1967

    Google Scholar 

  34. Rappelli A, Fabris F, Agostoni A, et al: Escrezione urinaria di catecolamine e di acido vanilmandelico in soggetti affetti da cirrosi epatica. Minerva Med 57:2406–2408, 1966

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NIH Research Grants AM-6908 and HE-10681, Public Health Service.

The authors gratefully acknowledge the advice and practical help given to them by Dr. Gertrude M. Tyce, who performed determinations of 5-HT and 5-HIAA, Dr. J. D. Jones, Dr. V. R. Mattox and Dr. F. T. Maher.

Recipient of a Wellcome Research Travel Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnardo, D.E., Summerskill, W.H.J., Strong, C.G. et al. Renal function, renin activity and endogenous vasoactive substances in cirrhosis. Digest Dis Sci 15, 419–425 (1970). https://doi.org/10.1007/BF02283868

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02283868

Keywords

Navigation