Skip to main content
Log in

The aromatic diboracyclopropenyl (diboriranyl) anion; CB2H3 : An ab initio study

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The most stable structure of CB2H3 , as established computationally, is the aromatic diboracyclopropenyl (diboriranyl) anion (5), while open-chainC 2v, isomer H2BCBH (7) is only 3 kcal/mol higher in energy at the QCISD(T)/6-311 +G**//MP2/6-31+G*+ZPE (HF/6-31 +G*). The 47-kcal/mol barrier between cyclic,5, and open-chain,7, structures suggests that both of them may be observed. The aromatic stabilization energy of the diboriranyl anion (18 kcal/mol) is half the value in the isoelectronic cyclopropenium ion, C3H3 +. The computed, by IGLO method (5a), and experimental (6a) chemical shifts,δ(13C) andδ(11B), agree within 4 ppm range. The theoretical vibrational frequencies of the most stable isomers,5 and7, are presented for experimental verification of these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Budzelaar, P. H. M.; Schleyer, P. v. R.J. Am. Chem. Soc. 1986,108, 3967;

    CAS  Google Scholar 

  2. Korkin, A.; Glukhovtsev, M.; Schleyer, P. v. R.Int. J. Quantum. Chem. 1993,46, 37.

    Article  Google Scholar 

  3. Sundaralingam, A. M.; Lensen, L. H.J. Am. Chem. Soc. 1966,88, 198;

    Article  CAS  Google Scholar 

  4. Breslow, R.Pure Appl. Chem. 1971,28, 111;

    CAS  Google Scholar 

  5. Ku A. T.; Sundaralingam, A. M.J. Am. Chem. Soc. 1972,94, 1688;

    Article  CAS  Google Scholar 

  6. Krishnan, R.; Whiteside, R. A.; Pople, J. A.; Schleyer, P. v. R.J. Am. Chem. Soc. 1981,103, 5649;

    Article  Google Scholar 

  7. Allen, F. H.Tetrahedron 1982,38, 645;

    CAS  Google Scholar 

  8. Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.: Mallard, W. G.J. Phys. Chem. Ref. Data, Suppl. No. 1,1988,17, 109;

    Google Scholar 

  9. Wong, M. W.; Radom, L.J. Am. Chem. Soc. 1989,111, 6976;

    CAS  Google Scholar 

  10. Lammertsma, K.; Grüner, O. F.; Thibodeaux, A. F.; Schleyer, P. v. R.J. Am. Chem. Soc. 1989,111, 8995;

    Article  CAS  Google Scholar 

  11. Lammertsma, K.; Schleyer, P. v. R.J. Am. Chem. Soc. 1990,112, 7955;

    Article  Google Scholar 

  12. Li, W.-K.; Riggs, N. V.J. Mol. Struct. THEOCHEM,1992,89, 189.

    CAS  Google Scholar 

  13. Volpin, M. E.; Koreshkov, Y. D.; Dulova, V. G.; Kirsanov, D. N.Tetrahedron 1962,18, 107;

    Article  CAS  Google Scholar 

  14. Krogh-Jespersen, K.; Cremer, D.; Dill, S. D.; Pople, J. A., Schleyer, P. v. R.J. Am. Chem. Soc. 1981,103, 2589;

    Article  CAS  Google Scholar 

  15. Vander Kerk, S. M.; Budzelaar, P. H. M.; van der Kerk vom Hoof, A.; van der Kerk, G. J. M.; Schleyer, P. v. R.Angew. Chem. Int. Ed. Engl. 1983,22, 48

    Google Scholar 

  16. Budzelaar, P. H. M.; Kos, A. J.; Clark, T.; Schleyer, P. v. R.Organometallics 1985,4, 429;

    CAS  Google Scholar 

  17. Budzelaar, P. H. M.; Kraka, E.; Cremer, D.; Schleyer, P. v. R.J. Am. Chem. Soc. 1986,108, 561;

    CAS  Google Scholar 

  18. Eish, J. J.; Shafii, B.; Odom, J. D.; Rheinghold, A. L.J. Am. Chem. Soc. 1990,112, 1847;

    Google Scholar 

  19. Byun, Y.-G.; Saebo, S.; Pittman, C. U.J. Am. Chem. Soc. 1991,113, 3689.

    Article  CAS  Google Scholar 

  20. Liang, C.; Allen, L. C.J. Am. Chem. Soc. 1991,113, 1878;

    CAS  Google Scholar 

  21. Paetzold, P.; Geret-Baumgarten, L.; Boese, R.Angew. Chem. Int. Ed. Engl. 1992,31, 1040;

    Google Scholar 

  22. Bühl, M.; Schaefer III, H. F.; Schleyer, P. v. R.; Boese, R.Angew. Chem. Int. Ed. Engl. 1993,32, 1154.

    Article  Google Scholar 

  23. Brown, C. L.; Gross, K. P.; Onak, T.J. Am. Chem. Soc. 1972,94, 8055.

    CAS  Google Scholar 

  24. Wehrmann, R.; Meyer, H.; Bemdt, A.Angew. Chem. Int. Ed. Engl. 1985,24, 788.

    Article  Google Scholar 

  25. Meyer, H.; Schmidt-Lukash, G.; Baum, G.; Massa, W.; Bemdt, A.Z. Naturforsch. 1988,43b, 801.

    Google Scholar 

  26. Grützmacher, H.Angew. Chem. Int. Ed. Engl. 1992,31, 1329;

    Google Scholar 

  27. Willershausen, P.; Schmidt-Lukash, G.; Kybart, C.; Allwohn, J.; Massa, W.; McKee, M. L.; Schleyer, P. v. R.Angew. Chem. Int. Ed. Engl. 1992,31, 1384;

    Google Scholar 

  28. Berndt, A.Angew. Chem. 1993,32, 985;

    Google Scholar 

  29. Korkin, A. A.; McKee, M. L.; Schleyer, P. v. R.Inorg. Chem. 1995,34, 961.

    Article  CAS  Google Scholar 

  30. Gaussian 92, Revision E.3, Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.: Gill. P. M. W.; Wong. M. W.; Foresman, J. B.; Johnson, B. J.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian, Inc., Pittsburgh, PA, 1992.

    Google Scholar 

  31. Zero point energies at HF/6-31 +G* are scaled by 0.89 as recommended: Hehre. W. R.; Radom, L.; Schleyer, P. v. R.; Pople, J. A.Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.

    Google Scholar 

  32. Dewar, M. J. S.The Molecular Orbital Theory of Organic Chemistry; McGraw-Hill: New York, 1969.

    Google Scholar 

  33. Krogh-Jesperson, K.; Cremer, D.; Poppinger, D.; Pople, J. A.; Schleyer, P. v. R.; Chandrasekhar, J.J. Am. Chem. Soc. 1979,101, 4843;

    Google Scholar 

  34. Jemmis, E. D.; Subramanian, G.; Naga Srinivas. G.J. Am. Chem. Soc. 1992,114. 7939.

    CAS  Google Scholar 

  35. Jug, K.J. Org. Chem. 1984,49, 4475;

    Article  CAS  Google Scholar 

  36. Garratt, P. J.Aromaticity. Wiley: New York, 1986;

    Google Scholar 

  37. Minkin, V.; Glukhovtsev, M.; Simkin, B.Aromaticity and Antiaromaticity. Electronic and Structural Aspects. Wiley-Interscience: New York, 1994.

    Google Scholar 

  38. Alberts, I. L.; Schaefer III, H. F.Chem. Phys. Lett. 1990,165, 250.

    Article  CAS  Google Scholar 

  39. Kutzelnigg, W.Isr. J. Chem. 1980,76, 1919;

    Google Scholar 

  40. Schindler, M.; Kutzelnigg, W.J. Chem. Phys. 1982,76, 1919;

    CAS  Google Scholar 

  41. For a review of IGLO applications, see Kutzelnigg, W.; Schindler, M.; Fleischer, U.In:NMR Basis Principles and Progress. Springer-Verlag: Berlin, 1990, p 165.

    Google Scholar 

  42. Huzinaga, S.Approximate Wave Functions; University of Alberta: Edmonton, Alberta, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korkin, A.A., Schleyer, P.v.R., v. Arx, U. et al. The aromatic diboracyclopropenyl (diboriranyl) anion; CB2H3 : An ab initio study. Struct Chem 6, 225–228 (1995). https://doi.org/10.1007/BF02293115

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02293115

Key words

Navigation