Skip to main content
Log in

Canonical analysis of two convex polyhedral cones and applications

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Canonical analysis of two convex polyhedral cones consists in looking for two vectors (one in each cone) whose square cosine is a maximum. This paper presents new results about the properties of the optimal solution to this problem, and also discusses in detail the convergence of an alternating least squares algorithm. The set of scalings of an ordinal variable is a convex polyhedral cone, which thus plays an important role in optimal scaling methods for the analysis of ordinal data. Monotone analysis of variance, and correspondence analysis subject to an ordinal constraint on one of the factors are both canonical analyses of a convex polyhedral cone and a subspace. Optimal multiple regression of a dependent ordinal variable on a set of independent ordinal variables is a canonical analysis of two convex polyhedral cones as long as the signs of the regression coefficients are given. We discuss these three situations and illustrate them by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agha, A. (1986). Analyse canonique de deux cones polyédriques convexes [Canonical analysis of two convex polyhedral cones]. Mémoire de D.E.A. Paris: Université Paris IX-Dauphine, LAMSADE.

    Google Scholar 

  • Armstrong, R. D., & Frome E. L. (1976). A branch-and-bound solution of a restricted least squares problem.Technometrics, 18, 447–450.

    Google Scholar 

  • Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., & Silverman, E. (1955). An empirical distribution function for sampling with incomplete information.Annals of Mathematical Statistics, 26, 641–647.

    Google Scholar 

  • Barlow, R. E., Bartholomew, D. J., Bremner, J. M., & Brunk, H. D. (1972).Statistical inference under order restriction. New York: Wiley.

    Google Scholar 

  • Benzécri, J. P. (1979). Un algorithme pour construire une perpendiculaire commune à deux convexes. [An algorithm to construct a common perpendicular to two convex surfaces].Les cahiers de l'analyse des données, 4, 159–173.

    Google Scholar 

  • Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations.Journal of the Royal Statistical Society, Series B, 26, 211–252.

    Google Scholar 

  • Bradley, R. A., Katti, S. K., & Coons, I. J. (1962). Optimal scaling for ordered categories.Psychometrika, 27, 355–374.

    Google Scholar 

  • Bremner, J. M. (1982). An algorithm for nonnegative least squares and projection into cones. In H. Caussinus, P. Ettinger, & R. Tomassone (Eds),compstat 1982 (pp. 155–160). Wien: Physica-Verlag.

    Google Scholar 

  • de Leeuw, J. (1977).A normalized cone regression approach to alternating least squares algorithms. Unpublished manuscript. Leiden: University of Leiden, Department of Data Theory.

    Google Scholar 

  • de Leeuw, J. (1984). The GIFI system on nonlinear multivariate analysis. In E. Diday, M. Jambu, L. Lebart, J.-P. Pagès, & R. Tomassone (Eds),Data Analysis and Informatics, 3 (pp. 415–424). Amsterdam: North-Holland.

    Google Scholar 

  • de Leeuw, J., Young, F. W., & Takane, Y. (1976). Additive structure in qualitative data: An alternating least squares method with optimal scaling features.Psychometrika, 41, 471–503.

    Google Scholar 

  • Deutsch, F., McCabe, J. H., & Phillips, G. M. (1975). Some algorithms for computing best approximations from convex cones.SIAM Journal, Numerical Analysis, 12, 390–403.

    Google Scholar 

  • Fisher, R. A. (1946).Statistical methods for research workers (10th ed.). Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Gifi, A. (1981).Nonlinear multivariate analysis. Leiden: University of Leiden, Department of Data Theory.

    Google Scholar 

  • Jacquet-Lagreze, E., & Siskos, J. (1982). Assessing a set of additive utility functions for multicriteria decision-making, the UTA method.European Journal of Operational Research, 10, 151–164.

    Google Scholar 

  • Jennrich, R. I. (1977). Stepwise regression. In K. Enslein, A. Ralston & H. S. Wilf (Eds), Statistical methods for digital computers (pp. 58–75). New York: John Wiley & Sons.

    Google Scholar 

  • Judge, G. G., & Takayama, T. (1966). Inequality restrictions in regression analysis.Journal of American Statistical Association, 61 166–181.

    Google Scholar 

  • Kruskal, J. B. (1964). Nonmetric multidimensional scaling: A numerical method.Psychometrika, 29, 28–42.

    Google Scholar 

  • Kruskal, J. B. (1965). Analysis of factorial experiments by estimating monotone transformations of the data.Journal of the Royal Statistical Society, Series B, 27, 251–263.

    Google Scholar 

  • Kruskal, J. B., & Carmone, F. J. (1968).Monanova, a Fortran IV program for monotone analysis of variance. Unpublished manuscript. Bell Telephone Laboratories, Murray-Hill, New Jersey.

  • Kruskal, J. B., & Carroll, J. D. (1969). Geometrical models and Badness-of-fit functions. In P. R. Krishnaiah (Ed.),Multivariate analysis II (pp. 639–671). New York: Academic Press.

    Google Scholar 

  • Lawson, C. M., & Hanson, R. J. (1974). Solving least squares problems. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Luenberger, D. G. (1969). Optimization by vector space methods. New York: J. Wiley.

    Google Scholar 

  • Nishisato, S. (1980).Analysis of categorical data: Dual scaling and its applications. Toronto: University of Toronto Press.

    Google Scholar 

  • Ostrowski, A. M. (1966).Solutions of equations and systems of equations. New York: Academic Press.

    Google Scholar 

  • Pietri, M. (1972). Analyse des correspondances sous contraintes. [Correspondence analysis subject to constraints]. Unpublished manuscript. Fontenay-sous-Bois: CEA, LSEES.

    Google Scholar 

  • Stoer, J., & Witzgall, C. (1970).Convexity and optimization in finite dimensions 1. Berlin: Springer-Verlag.

    Google Scholar 

  • Tenenhaus, M. (1984). L'analyse canonique généralisée de variables numériques, nominales ou ordinales par des méthodes de codage optimal. [Generalized canonical analysis of numerical, nominal or ordinal variables by optimal scaling methods]. In E. Diday, M. Jambu, L. Lebart, J-P. Pagés, & R. Tomassone (Eds.),Data analysis and informatics, 3 (pp. 71–84). Amsterdam: North-Holland.

    Google Scholar 

  • Van Eeden, C. (1956). Maximum likelihood estimation of ordered probabilities.Indagationes Mathematicae, 18 (3), 444–455.

    Google Scholar 

  • van der Burg, E. (1983). Canals users guide. Leiden: University of Leiden, Department of Data Theory.

    Google Scholar 

  • van der Burg, E., & de Leeuw, J. (1983). Nonlinear canonical correlation.British Journal of Mathematical and Statistical Psychology, 36, 54–80.

    Google Scholar 

  • van der Burg, E., de Leeuw, J., & Verdegall, R. (1984).Nonlinear canonical correlation with m sets of variables. Leiden: University of Leiden, Department of Data Theory.

    Google Scholar 

  • Verdegall, R. (1986).Overals. Leiden: University of Leiden, Departent of Data Theory.

    Google Scholar 

  • Waterman, M. S. (1974). A restricted least squares problem.Technometrics, 16, 135–136.

    Google Scholar 

  • Young, F. W. (1981). Quantitative analysis of qualitative data.Psychometrika, 46, 357–388.

    Google Scholar 

  • Young, F. W., de Leeuw, J., & Takane, Y. (1976). Regression with qualitative and quantitative variables: An alternating least squares method with optimal scaling features.Psychometrika, 41, 505–529.

    Google Scholar 

  • Young, F. W., Takane, Y. & de Leeuw, J. (1978). The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features.Psychometrika, 43, 279–281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to the memory of Patrice Bertier who suggested its subject to me in 1974. This paper also owes much to the very valuable suggestions of J. P. Benzécri, P. Cazes and J. de Leeuw, and I am very grateful to them. I also want to thank J. Yellin for his help in improving the English of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenenhaus, M. Canonical analysis of two convex polyhedral cones and applications. Psychometrika 53, 503–524 (1988). https://doi.org/10.1007/BF02294404

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294404

Key words

Navigation