Skip to main content
Log in

The tunneling method for global optimization in multidimensional scaling

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

This paper focuses on the problem of local minima of the STRESS function. It turns out that unidimensional scaling is particularly prone to local minima, whereas full dimensional scaling with Euclidean distances has a local minimum that is global. For intermediate dimensionality with Euclidean distances it depends on the dissimilarities how severe the local minimum problem is. For city-block distances in any dimensionality many different local minima are found. A simulation experiment is presented that indicates under what conditions local minima can be expected. We introduce the tunneling method for global minimization, and adjust it for multidimensional scaling with general Minkowski distances. The tunneling method alternates a local search step, in which a local minimum is sought, with a tunneling step in which a different configuration is sought with the same STRESS as the previous local minimum. In this manner successively better local minima are obtained, and experimentation so far shows that the last one is often a global minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arabie, P. (1991). Was Euclid an unnecessarily sophisticated psychologist?Psychometrika, 56, 567–587.

    Google Scholar 

  • Bailey, R. A., & Gower, J. C. (1990). Approximating a symmetric matrix.Psychometrika, 55, 665–675.

    Google Scholar 

  • Commandeur, J. J. F. (1992).Missing data in the distance approach to Principal Component Analysis (Research Rep. No. RR-92-07). Leiden: Department of Data Theory.

    Google Scholar 

  • Critchley, F. (1986). Dimensionality theorems in MDS and HCA. In E. Diday et al. (Eds),Data analysis and informatics, Vol. 4 (pp. 45–70). Amsterdam: North-Holland.

    Google Scholar 

  • Defays, D. (1978). A short note on a method of seriation.British Journal of Mathematical and Statistical Psychology, 3, 49–53.

    Google Scholar 

  • de Leeuw, J. (1977). Applications of convex analysis to multidimensional scaling. In J. R. Barra, F. Brodeau, G. Romier, & B. van Cutsem (Eds.),Recent development in statistics (pp. 133–145). Amsterdam: North-Holland.

    Google Scholar 

  • de Leeuw, J. (1988). Convergence of the majorization method for multidimensional scaling.Journal of Classification, 5, 163–180.

    Google Scholar 

  • de Leeuw, J. (1993).Fitting distances by least squares. Unpublished manuscript.

  • de Leeuw, J., & Heiser, W. J. (1977). Convergence of correction matrix algorithms for multidimensional scaling. In J. C. Lingoes, E. Roskam, & I. Borg (Eds.),Geometric representations of relational data (pp. 735–752). Ann Arbor: Mathesis Press.

    Google Scholar 

  • de Leeuw, J. & Heiser, W. J. (1980). Multidimensional scaling with restrictions on the configuration. In P. R. Krishnaiah (Ed.),Multivariate analysis, Vol. V (pp. 501–522). Amsterdam: North-Holland.

    Google Scholar 

  • De Soete, G., Hubert, L., & Arabie, P. (1988). On the use of simulated annealing for combinatorial data analysis. In W. Gaul & M. Schader (Eds.),Data, expert, knowledge and decisions (pp. 329–340). Berlin: Springer-Verlag.

    Google Scholar 

  • Dinkelbach, W. (1967). On nonlinear fractional programming.Management Science, 13, 492–498.

    Google Scholar 

  • Funk, S. G., Horowitz, A. D., Lipshitz, R., & Young, F. W. (1974). The perceived structure of American ethnic groups: The use of multidimensional scaling in stereotype research.Personality and Social Psychology Bulletin, 1, 66–68.

    Google Scholar 

  • Gomez, S., & Levy, A. V. (1982). The tunneling method for solving the constrained global optimization problem with non-connected feasible regions. In J. P. Hennart (Ed.),Lecture notes in mathematics, 909 (pp. 34–47). Berlin: Springer-Verlag.

    Google Scholar 

  • Green, P. E., Carmone, F. J. Jr., & Smith, S. M. (1989).Multidimensional scaling, concepts and applications. Boston: Allyn and Bacon.

    Google Scholar 

  • Groenen, P. J. F. (1993).The majorization approach to multidimensional scaling: Some problems and extensions. Leiden: DSWO Press.

    Google Scholar 

  • Groenen, P. J. F., & Heiser, W. J. (1991).An improved tunneling function for finding a decreasing series of local minima (Research Rep. No. RR-91-06). Leiden: Department of Data Theory.

    Google Scholar 

  • Groenen, P. J. F., de Leeuw, J., & Mathar, R. (1996). Least squares multidimensional scaling with transformed distances. In W. Gaul & D. Pfeifer (Eds.),Studies in classification, data analysis, and knowledge organization (pp. 177–185). Berlin: Springer.

    Google Scholar 

  • Groenen, P. J. F., Mathar, R., & Heiser, W. J. (1995). The majorization approach to multidimensional scaling for Minkowski distances.Journal of Classification, 12, 3–19.

    Google Scholar 

  • Hardy, G. H., Littlewood, J. E. & Pólya, G. (1952).Inequalities (2nd ed.). Cambridge: University Press.

    Google Scholar 

  • Heiser, W. J. (1989). The city-block model for three-way multidimensional scaling. In R. Coppi & S. Bolasco (Eds.),Multiway data analysis (pp. 395–404). Amsterdam: North-Holland.

    Google Scholar 

  • Heiser, W. J. (1991). A generalized majorization method for least squares multidimensional scaling of pseudodistances that may be negative.Psychometrika, 56, 7–27.

    Google Scholar 

  • Heiser, W. J. (1995).Convergent computation by iterative majorization: Theory and applications in multidimensional data analysis. In W. J. Krzanowski (Eds.),Recent advances in descriptive multivariate analysis (pp. 157–189). Oxford: Oxford University Press.

    Google Scholar 

  • Heiser, W. J., & de Leeuw, J. (1977).How to use SMACOF-1 (Research Rep. No. UG-86-02). Leiden: Department of Data Theory.

    Google Scholar 

  • Heiser, W. J., & Groenen, P. J. F. (1994).Cluster differences scaling with a within clusters loss component and a fuzzy successive approximation strategy to avoid local minima (Research Rep. No. RR-94-03). Leiden: Department of Data Theory.

    Google Scholar 

  • Hubert, L. J., & Arabie, P. (1986). Unidimensional scaling and combinatorial optimization. In J. de Leeuw, W. J. Heiser, J. Meulman & F. Critchley (Eds.),Multidimensional data analysis (pp. 181–196). Leiden: DSWO Press.

    Google Scholar 

  • Hubert, L. J., Arabie, P., & Hesson-McInnis, M. (1992). Multidimensional scaling in the city-block metric: A combinatorial approach.Journal of Classification, 9, 211–236.

    Google Scholar 

  • Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 29, 1–28.

    Google Scholar 

  • Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method.Psychometrika, 29, 115–129.

    Google Scholar 

  • Kruskal, J. B., Young, F. W., & Seery, J. B. (1977).How to use KYST-2, a very flexible program to do multidimensional scaling and unfolding. Murray Hill, NJ: AT&T Bell Laboratories.

    Google Scholar 

  • Levy, A. V., & Gomez, S. (1985). The tunneling method applied to global optimization. In P. T. Boggs, R. H. Byrd, & R. B. Schnabel (Eds.),Numerical optimization 1984 (pp. 213–244). Philadelphia: SIAM.

    Google Scholar 

  • Mathar, R., & Groenen, P. J. F. (1991). Algorithms in convex analysis applied to multidimensional scaling. In E. Diday & Y. Lechevallier (Eds.),Symbolic-numeric data analysis and learning (pp. 45–56). Commack, NY: Nova Science Publishers.

    Google Scholar 

  • Meulman, J. J. (1986).A distance approach to nonlinear multivariate analysis. Leiden: DSWO Press.

    Google Scholar 

  • Meulman, J. J. (1992). The integration of multidimensional scaling and multivariate analysis with optimal transformations.Psychometrika, 57, 539–565.

    Google Scholar 

  • Montalvo, A. (1979).Development of a new algorithm for the global minimization of functions Unpublished doctoral dissertation, Universidad Nacional Autonoma de Mexico.

  • Robinson, W. S. (1951). A method for chronologically ordering archaeological deposits.American Antiquity, 16, 293–301.

    Google Scholar 

  • Shepard, R. N. (1962). Analysis of proximities: Multidimensional scaling with an unknown distance function.Psychometrika, 27, 125–140.

    Google Scholar 

  • Tijssen, R. J. W. (1992).Cartography of science: Scientometric mapping with multidimensional scaling methods. Leiden: DSWO Press.

    Google Scholar 

  • Torgerson, W. S. (1958).Theory and methods of scaling. New York: Wiley.

    Google Scholar 

  • Tucker, W. S. (1951).A method for synthesis of factor analysis studies (Personel Research Section Rep. No. 984). Washington DC: Department of the Army.

    Google Scholar 

  • Vilkov, A. V., Zhidkov, N. P., & Shchedrin, B. M. (1975). A method of finding the global minimum of a function of one variable.USSR Computational Mathematics and Mathematical Physics, 15, 1040–1042.

    Google Scholar 

  • Wagenaar, W. A., & Padmos, P. (1971). Quantitative interpretation of stress in Kruskal's multidimensional scaling technique.British Journal of Mathematical and Statistical Psychology, 24, 101–110.

    Google Scholar 

  • Weeks, D. G., & Bentler, P. M. (1982). Restricted multidimensional scaling models for asymmetric proximities.Psychometrika, 47, 201–208.

    Google Scholar 

  • Zielman, B. (1991).Three-way scaling of asymmetric proximities (Research Rep. No. RR-91-01). Leiden: Department of Data Theory.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on the 1994 Psychometric Society's outstanding thesis award of the first author. The authros would like to thank Robert Tijssen of the CWTS Leiden for kindly making available the co-citation data of the Psychometric literature. This paper is an extended version of the paper presented at the Annual Meeting of the Psychometric Society at Champaign-Urbana, Illin., June 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groenen, P.J.F., Heiser, W.J. The tunneling method for global optimization in multidimensional scaling. Psychometrika 61, 529–550 (1996). https://doi.org/10.1007/BF02294553

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294553

Key words

Navigation