Skip to main content
Log in

Mixtures of (constrained) ultrametric trees

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

This paper presents a new methodology concerned with the estimation of ultrametric trees calibrated on subjects' pairwise proximity judgments of stimuli, capturing subject heterogeneity using a finite mixture formulation. We assume that a number of unobserved classes of subjects exist, each having a different ultrametric tree structure underlying the pairwise proximity judgments. A new likelihood based estimation methodology is presented for those finite mixtures of ultrametric trees, that accommodates ultrametric as well as other external constraints. Various assumptions on the correlation of the error of the dissimilarities are accommodated. The performance of the method to recover known ultrametric tree structures is investigated on synthetic data. An empirical application to published data from Schiffman, Reynolds, and Young (1981) is provided. The ability to deal with external constraints on the tree-topology is demonstrated, and a comparison with an alternative clustering based method is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitkin, M., & Rubin, D. B. (1985). Estimation and Hypothesis Testing in Finite Mixture Distributions.Journal of the Royal Statistical Society, Series B,47, 67–75.

    Google Scholar 

  • Allenby, G. M. (1989). A unified approach to identifying, estimating and testing demand structures with aggregate scanner data.Marketing Science, 8, 265–280.

    Google Scholar 

  • Amemiya, T. (1985).Advanced economics. Cambridge: Harvard University Press.

    Google Scholar 

  • Aptech (1995).Constrained maximum likelihood, GAUSS manual. Maple Valley, WA: Aptech systems.

    Google Scholar 

  • Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions.Psychometrika, 52, 345–370.

    Article  Google Scholar 

  • Carroll, J. D. (1976). Spatial, non-spatial and hybrid models for scaling.Psychometrika, 41, 439–463.

    Article  Google Scholar 

  • Carroll, J. D., Clark, L., & DeSarbo, W. S. (1984). The representation of three-way proximities data by single and multiple tree structure models.Journal of Classification, 1, 25–74.

    Article  Google Scholar 

  • Carroll, J. D., & Pruzanski, S. (1980). Discrete and hybrid scaling models. In E. D. Lanterman & H. Feger (Eds),Similarity and Choice, (pp. 48–69). Bern: Hans Huber.

    Google Scholar 

  • Corter, J. E. (1996).Tree models of similarity. London: Sage.

    Google Scholar 

  • Corter, J. E., & Tversky, A. (1986). Extended Similarity Trees.Psychometrika, 51, 429–451.

    Article  Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, R. B. (1977) Maximum likelihood from incomplete data via the EM-algorithm.Journal of the Royal Statistical Society, Series B,39, 1–38.

    Google Scholar 

  • DeSarbo, W. S., & Mahajan, V. (1984). Constrained classification: the use of a priori information in cluster analysis.Psychometrika, 49, 187–215.

    Google Scholar 

  • DeSarbo, W. S., Manrai, A. K., & Manrai, L. A. (1993). Non-Spatial Tree Models for the Assessment of Competitive Market Structure: An Integrated Review of the Marketing and Psychometric Literature. In J. Eliashberg & G. L. Lilien (Eds.),Handbooks in operations research and management science: Marketing (pp. 193–257). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • DeSoete, G. (1983). A least squares algorithm for fitting trees to proximity data.Psychometrika, 48, 621–626.

    Google Scholar 

  • Ferligoj, A., & Batagelj, V. (1982). Some types of clustering with relational constraints.Psychometrika, 47, 541–552.

    Article  Google Scholar 

  • Gordon, A. D. (1973). Classification in the presence of constraints.Biometrics, 29, 821–827.

    Google Scholar 

  • Gordon, A. D. (1980).Classification. London: Chapman and Hall.

    Google Scholar 

  • Hartigan, J. A. (1967). Representation of similarity matrices by trees.Journal of the American Statistical Association, 62, 1140–1158.

    Google Scholar 

  • Jamshidian, M., & Bentler, P. M. (1993). A modified Newtone method for constrained estimation in covariance structure analysis.Computational Statistics and Data Analysis, 15, 133–146.

    Article  Google Scholar 

  • Johnson, S. C. (1967). Hierarchical Clustering Schemes.Psychometrika, 32, 241–254.

    Article  PubMed  Google Scholar 

  • Lindsey, J. K. (1993).Models for repeated measurements. Oxford: Clarendon Press.

    Google Scholar 

  • Morgan, B. T., & Ray, A. P. G. (1995). Non-uniqueness and inversion in cluster analysis.Applied Statistics, 44, 117–134.

    Google Scholar 

  • Payne, R. W., et al. (1993).GENSTAT 5 Reference manual. Oxford: Clarendon Press.

    Google Scholar 

  • Ramsay, J. O. (1977). Maximum likelihood estimation in multidimensional scaling.Psychometrika, 42, 241–266.

    Google Scholar 

  • Rao, V. R., & Sabavala, D. J. (1981). Inference of hierarchical choice processes from panel data.Journal of Consumer Research, 8, 85–96.

    Article  Google Scholar 

  • Roux, M. (1987). Techniques of Approximation for Building Two Tree Structures.Proceedings of the Franco-Japanese Scientific Seminar: Recent Developments in Clustering and Data-Analysis, 4, 127–146.

    Google Scholar 

  • Sattah, S., & Tversky, A. (1977). Additive Similarity Trees.Psychometrika, 42, 319–345.

    Google Scholar 

  • Scales, L. E. (1985).Introduction to non-linear optimization. London: MacMillan.

    Google Scholar 

  • Schiffman, S. S., Reynolds, M. L., & Young, F. W. (1981). Introduction to multidimensional Scaling. London: Academic Press.

    Google Scholar 

  • Srb, A. M., Owen, R. D., & Edgar, R. S. (1965).General genetics. San Francisco: Freeman.

    Google Scholar 

  • Titterington, D. M., Smith, A. F. M., & Makov, U. E. (1905). Statistical analysis of finite mixture distributions. New York: John Wiley.

    Google Scholar 

  • Tversky, A. (1977). Features of similarity.Psychological Review, 84, 327–352.

    Google Scholar 

  • Wedel, M., & DeSarbo, W. S. (1994). A Review of Recent Developments in Latent Class Regression Models. In R. P. Bagozzi (Ed.),Advanced methods of marketing research (pp. 352–388). Cambridge: Blackwell.

    Google Scholar 

  • Wedel, M., & DeSarbo, W. S. (1995). A mixture likelihood approach for generalized linear models.Journal of Classification, 12, 21–56.

    Article  Google Scholar 

  • Wedel, M., & DeSarbo, W. S. (1996). An exponential family mixture MDS methodology for simultaneous segmentation and product positioning.Journal of Business and Economic Statistics, 14, 447–459.

    Google Scholar 

  • Wedel, M. & Kamakura, W. A. (1997).Market segmentation: Conceptual and mathodological foundations. Dordrecht: Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to thank the Editor, Associate Editor, and two anonymous reviewers for their excellent comments and suggestions which helped improve the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wedel, M., DeSarbo, W.S. Mixtures of (constrained) ultrametric trees. Psychometrika 63, 419–443 (1998). https://doi.org/10.1007/BF02294863

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294863

Key words

Navigation