Skip to main content
Log in

A nonspatial methodology for the analysis of two-way proximity data incorporating the distance-density hypothesis

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

This paper presents a nonspatial operationalization of the Krumhansl (1978, 1982) distancedensity model of similarity. This model assumes that the similarity between two objectsi andj is a function of both the interpoint distance betweeni andj and the density of other stimulus points in the regions surroundingi andj. We review this conceptual model and associated empirical evidence for such a specification. A nonspatial, tree-fitting methodology is described which is sufficiently flexible to fit a number of competing hypotheses of similarity formation. A sequential, unconstrained minimization algorithm is technically presented together with various program options. Three applications are provided which demonstrate the flexibility of the methodology. Finally, extensions to spatial models, three-way analyses, and hybrid models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appelman, I. B., & Mayzner, M. S (1982). Application of geometric models to letter recognition: Distance and density, Journal of Experimental Psychology: General, 111, 60–100.

    Google Scholar 

  • Bass, F. M., Pessemier, E. A., & Lehman, D. R. (1972). An experimental study of the relationships between attitudes, brand preference, and choice. Behavioral Science, 17, 532–541.

    Google Scholar 

  • Birnbaum, M. H. (1974). Using contextural effects to derive psychological scales. Perception and Psychophysics, 15, 89–96.

    Google Scholar 

  • Carroll, J. D. (1976). Spatial, nonspatial, and hybrid models for scaling. Psychometrika, 41, 439–463.

    Google Scholar 

  • Carroll, J. D. & Arabie, P. (1980). Multidimensional scaling. Annual Review of Psychology, 31, 607–649.

    Google Scholar 

  • Carroll, J. D., & Chang, J. J. (1973). A method for fitting a class of hierachical tree structure models to dissimilarities data, and iits application to some body parts data of Miller's. Proceedings of the 81st Annual Convention of the American Psychological Association, 8, 1097–1098.

    Google Scholar 

  • iCarroll, J. D., Clark, L. A., & DeSarbo, W. S. (1984). The representation of three-way proximity data by single and multiple tree structure models. Journal of Classification, 1, 25–74.

    Google Scholar 

  • Carroll, J. D., & Pruzansky, S. (1975, August). Fitting of hierarchical tree structure (HTS) models, mixtures of HTS models, and hybrid models, via mathematical programming and alternating least squares. Paper presented at U.s.-Japan Seminar of Multidimensional Scaliing, University of California at San Diego, La Jolla, California.

  • Carroll, J. D., & Pruzansky, S. (1980). Discrete and hybrid scaling models. In E. D. Lantermann & H. Feger (eds.), Similarity and choice (pp. 48–69). Bern: Hans Huber.

    Google Scholar 

  • Chandler, J. P. (1969). STEPIT—Finds local minima of a smooth function of several parameters, Behavioral Sciences, 14, 81–82.

    Google Scholar 

  • Corter, J E. (1987). Similarity, confusability and the density hypothesis. Journal of Experimental Psychology: General, 116, 238–249.

    Google Scholar 

  • Corter, J. E. (1988). Testing the density hypothesis: Reply to Krumhansl. Journal of Experimental Psychology: General, 117, 105–106.

    Google Scholar 

  • Cunningham, J. P. (1978). Free trees and bidirectional trees as a representation of psychological distance. Journal of Mathematical Psychology, 17, 165–188.

    Google Scholar 

  • Currim, I. S. (1982). Predictive testing of consumer choice models not subject to independence of irrelevant alternatives. Journal of Marketing Research, 19, 208–222.

    Google Scholar 

  • Debreu, G. E. (1960). Review of R. D. Luce, Individual choice behavior: A theoretical analysis. American Economic Review, 50, 186–188.

    Google Scholar 

  • DeSarbo, W. S. (1982). GENNCLUS: New models for general nonhierarchical clustering analysis. Psychometrika, 47, 449–475.

    Google Scholar 

  • De Soete, G., De Sarbo, W. S., Furnas, G. W., & Carroll, J. D. (1984). The estimation of ultrametric and path length trees from rectangular proximity data. Psychometrika, 49, 289–310.

    Google Scholar 

  • Fiacco, A. V., & McCormick, C. P. (1968). Nonlinear programming: Sequential unconstrained minimization techniques. New York: Wiley.

    Google Scholar 

  • Gower, J. (1977). The analysis of asymmetric data and orthogonality. In J. P. Barra et al. (Eds.). Recent developments in statistics (pp. 1-9–1-123). New York: North Holland.

    Google Scholar 

  • Green, P. E., & Tull, D. S. (1978). Research for marketing decisions (4th ed). Englewood Cliffs, N. J.: Prentice-Hall.

    Google Scholar 

  • Gregg, V. (1976). Word frequency, recognition and recall. In J. Brown (ed.), Recall and Recognition 183–216). New York: Wiley.

    Google Scholar 

  • Hartigan, J. A. (1967). Representation of similarity matrices by trees. Journal of the American Statistical Association, 62, 1140–1158.

    Google Scholar 

  • Huber, J., Payne, J., & Puto, C. (1982). Adding asymmetrically dominated alternatives: Violations of regularity and the similarity hypothesis. Journal of Consumer Research, 9, 90–98.

    Google Scholar 

  • Jardine, C. J. Jardine, N., & Sibson, R. (1967). The structure and construction of taxonomic hierarchies. Mathematical Biosciences, 1, 173–179.

    Google Scholar 

  • Johnson, S. C. (1976). Hierarchical clustering schemes. Psychometrika, 32, 241–254.

    Google Scholar 

  • Krumhansl, C. L. (1978). Concerning the applicability of geometric models to similarity data: The interrelationship between similarity and spatial density. Psychological Review, 85, 445–463.

    Google Scholar 

  • Krumhansl, C. L. (1982). Density versus feature weights as predictors of visual identification: Comment on Appelman and Mayzner. Journal of Experimental Psychology: General, 111, 101–108.

    Google Scholar 

  • Krumhansl, C. L. (1988). Testing the densith hypothesis: Comment on Corter. Journal of Experimental Psychology: General, 117, 101–104.

    Google Scholar 

  • Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1–27.

    Google Scholar 

  • Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29, 115–129.

    Google Scholar 

  • Kruskal, J. B. & Wish, M. (1978). Multidimensional Scaling. Beverly Hills, CA: Sage.

    Google Scholar 

  • Mervis, C. B., & Rosch, E. (1981. Categorization of natural objects. In M. R. Rozenzweig & W. Porter (Eds.), Annual Review of Psychology (Vol. 32, pp. 89–115). Palo Alto, CA: Annual Reviews.

    Google Scholar 

  • Murphy, G. L., & Smith, E. E. (1982). Basic-level superiority in picture categorization. Journal of Verbal Learning and Verbal Behavior, 21, 1–20.

    Google Scholar 

  • Parducci, A. (1965). Category judgment: A range-frequency model. Psychological Review, 72, 407–418.

    Google Scholar 

  • Pruzansky, S., Tversky, A., & Carroll, J. D. (1982). Spatial versus tree representations of proximity data. Psychometrika, 47, 3–24.

    Google Scholar 

  • Rao, S. S. (1984). Optimization: Theory and applications (2nd ed.). New York: Wiley.

    Google Scholar 

  • Rao, V. R., Sabavala, D. J., & Langfeld, P. A. (1977).Alternative measures for partitioning analysis based on brand switching data. Unpublished manuscript, Cornell University.

  • Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439.

    Google Scholar 

  • Rosenberg, S., & Kim, M. P. (1975). The method of sorting as a data-gathering procedure in multivariate research. Multivariate Behavioral Research, 10, 489–502.

    Google Scholar 

  • Rothkopf, E. Z. (1975). A measure of stimulus similarity and errors insome parired-associated learning tasks. Journal of Experimental Psychology, 53, 94–101.

    Google Scholar 

  • Saito, T. (1986). Multidimensional scaling to explore complex aspects in dissimilarity judgment. Behaviormetrika, 20, 35–62.

    Google Scholar 

  • Sattath, S. & Tversky, A. (1977). Additive similarity trees. Psychometrika, 42, 319–345.

    Google Scholar 

  • Shepard, R. N. (1962a). The analysis of proximities: Multidimensional scaling with an unknown distance function. Part I. Psychometrika, 27, 125–140.

    Google Scholar 

  • Shepard, R. N. (1962b). The analysis of proximities: Multidimensional scaling with an unknown distance function. Part II. Psychometrika, 27, 219–246.

    Google Scholar 

  • Shepard, R. N. (1963). Analysis of proximities as a technique for the study of information processing in man. Human Factors, 5, 33–48.

    Google Scholar 

  • Sjöberg, L. A. (1972). A cognitive theory of similarity. Goteborg Psychological Reprots, 2, 10–30.

    Google Scholar 

  • Torgerson, W. S. (1958). Theory and methods of scaling. New York: Wiley.

    Google Scholar 

  • Tulving, E. (1974). Cue dependent forgetting. American Scientist, 62, 74–82.

    Google Scholar 

  • Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.

    Google Scholar 

  • Tversky, B., & Hemenway, K.. (1984). Objects, parts, and categories. Journal of Experimental Psychology: General, 113, 169–193.

    Google Scholar 

  • Tversky, A., & Russo, J. E. (1969). Substitutability and similarity in binary choices. Journal of Mathematical Psychology, 6, 1–12.

    Google Scholar 

  • Watkins, M. J. (1979). Engrams as cuegrams and forgetting as cue overload: A cuing approach to the structure of memory. In C. R. Puff (Ed.), Memory organization and structure (pp. 347–372). New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to thank three anonymous reviewers and the editor for their insightful comments on a previous draft of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeSarbo, W.S., Manrai, A.K. & Burke, R.R. A nonspatial methodology for the analysis of two-way proximity data incorporating the distance-density hypothesis. Psychometrika 55, 229–253 (1990). https://doi.org/10.1007/BF02295285

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02295285

Key words

Navigation