Skip to main content
Log in

Minimax d-optimal designs for item response theory models

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Various different item response theory (IRT) models can be used in educational and psychological measurement to analyze test data. One of the major drawbacks of these models is that efficient parameter estimation can only be achieved with very large data sets. Therefore, it is often worthwhile to search for designs of the test data that in some way will optimize the parameter estimates. The results from the statistical theory on optimal design can be applied for efficient estimation of the parameters.

A major problem in finding an optimal design for IRT models is that the designs are only optimal for a given set of parameters, that is, they are locally optimal. Locally optimal designs can be constructed with a sequential design procedure. In this paper minimax designs are proposed for IRT models to overcome the problem of local optimality. Minimax designs are compared to sequentially constructed designs for the two parameter logistic model and the results show that minimax design can be nearly as efficient as sequentially constructed designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adema, J. J. (1990).Models and algorithms for the construction of achievement tests. Unpublished doctoral dissertation, University of Twente.

  • Andrich, D. (1978). A rating scale formulation for ordered response categories.Psychometrika, 43, 561–573.

    Article  Google Scholar 

  • Atkinson, A. C. & Donev, A. N. (1996).Optimum experimental designs. Oxford: Clarendon Press.

    Google Scholar 

  • Bartholomew, D. J. (1987).Latent variable models and factor analysis. London: Oxford University Press.

    Google Scholar 

  • Berger, M. P. F. (1992). Sequential sampling designs for the two-parameters item response theory model.Psychometrika, 57, 521–538.

    Article  Google Scholar 

  • Berger, M. P. F. (1994a). D-optimal sequential sampling designs for item response theory models.Journal of Educational Statistics, 19, 43–56.

    Google Scholar 

  • Berger, M. P. F. (1994b). A general approach to algorithmic design of fixed-form tests, adaptive tests and testlets.Applied Psychological Measurement, 18, 141–153.

    Google Scholar 

  • Berger, M. P. F. & Mathijssen, E. (1997). Optimal test designs for polytomously scored items.British Journal of Mathematical and Statistical Psychology, 50, 127–141.

    Google Scholar 

  • Berger, M. P. F. & Veerkamp, W. J. J. (1996). A review of selection methods for optimal test design. In M. Wilson and G. Engelhard (Eds.),Objective measurement: theory into practice, Volume III (pp. 437–455), Norwoord, NJ, Ablex Publishing.

    Google Scholar 

  • Boekkooi-Timminga, E. (1989).Models for computerized test construction, Unpublished doctoral dissertation, University of Twente.

  • Bock, R.D. (1972) Estimating item parameters and latent ability when responses are scored in two or more nominal categories.Psychometrika, 37, 29–51.

    Google Scholar 

  • Chaloner, K. & Larntz, K. (1989). Optimal Bayesian design applied to logistic regression experiments.Journal of Statistical Planning and Inference, 21, 191–208.

    Article  Google Scholar 

  • Fedorov, V.V. (1980). Convex design theory.Mathematische Operations forschung und Statistics, Serie Statistics, 11, 403–413.

    Google Scholar 

  • Ford, I., Kitsos, C. P., & Titterington, D. M. (1989). Recent advances in nonlinear experimental design.Technometrics, 31, 49–60.

    Google Scholar 

  • Heinen, A. G. J. J. (1996).Latent class and discrete latent variable models. London: Sage Publications.

    Google Scholar 

  • Jones, D. H. & Jin, Z. (1994). Optimal sequential designs for on-line item estimation.Psychometrika, 59, 59–75.

    Article  Google Scholar 

  • Kiefer, J. (1974). General equivalence theory for optimum designs (Approximate theory).The Annals of Statistics, 2, 849–879.

    Google Scholar 

  • Kiefer, J. & Wolfowitz (1960). The equivalence of two extremum problems.Canadian Journal of Mathematics, 12, 363–366.

    Google Scholar 

  • King, C. Y. Joy (1996)Minimax optimal designs. Unpublished doctoral disseration, UCLA Department of Biostatistics.

  • Lord, F. M. (1980).Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Masters, G. N. (1982). A Rasch model for partial credit scoring.Psychometrika, 47, 149–174.

    Article  Google Scholar 

  • Parthasarathy, K. R. (1967).Probability measures on metric spaces. New York: Academic Press.

    Google Scholar 

  • Pazman (1986).Foundations of optimum experimental design. Dordrecht/Boston/Lancaster: D. Reidel Publishing.

    Google Scholar 

  • Pshenichnyi, B. N. (1971).Necessary conditions for an extremum. New York: Marcel Dekker.

    Google Scholar 

  • Sitter, R. R. (1992). Robust designs for binary data.Biometrics, 48, 1145–1155.

    Google Scholar 

  • Stefanski, L. A. and Carroll, R. J. (1985). Covariate measurement error in logistic regression.Annals of Statistics, 13, 1335–1351.

    Google Scholar 

  • Silvey, S. D. (1980).Optimal design. London: Chapman & Hall.

    Google Scholar 

  • Stocking, M. L. (1990). Specifying optimum examinees for item parameter estimation in item response theory.Psychometrika, 55, 461–475.

    Article  Google Scholar 

  • Theunissen, T.J.J.M. (1985). Binary programming and test design.Psychometrika, 50, 411–420.

    Article  Google Scholar 

  • Thissen, D. & Steinberg, L. (1986). A taxonomy of item response models.Psychometrika, 51, 567–577.

    Article  Google Scholar 

  • Thissen, D. & Wainer, H. (1982). Some standard errors in item response theory.Psychometrika, 47, 397–412.

    Google Scholar 

  • Van der Linden, W. J. & Boekkooi-Timminga, E. (1989). A maximin model for test design with practical constraints.Psychometrika, 53, 237–247.

    Google Scholar 

  • Wingersky, M. S. & Lord, F. M. (1984). An investigation of methods for reducing sampling error in certain IRT procedures.Applied Psychological Measurement, 8, 347–364.

    Google Scholar 

  • Wong, W. K. (1992). A unified approach to the construction of minimax designs.Biometrika, 79, 611–619.

    Google Scholar 

  • Wong, W. K., & Cook, R. D. (1993). Heteroscedastic G-optimal designs.Journal of the royal Statistical Society, Series B, 55, 871–880.

    Google Scholar 

  • Wynn, H. P. (1970). The sequential generation of D-optimum experimental designs.Annals of Mathematical Statistics, 41, 1655–1664.

    Google Scholar 

  • Wu, C.F.J. (1985) Efficient sequential designs with binary data.Journal of the American Statistical Association, 80, 974–984.

    Google Scholar 

  • Zhu, W., Ahn, H. & Wong, W. K. (1998). Multiple objective optimal designs for the logit model.Communications in Statistics (Theory and Methods), 27, 1581–1592.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn P. F. Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, M.P.F., Joy King, C.Y. & Wong, W.K. Minimax d-optimal designs for item response theory models. Psychometrika 65, 377–390 (2000). https://doi.org/10.1007/BF02296152

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02296152

Key words

Navigation