Skip to main content
Log in

Effect of lovastatin alone and as an adjuvant chemotherapeutic agent on hepatoma tissue culture-4 cell growth

  • Original Articles
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background: Cholesterol is essential for cell viability and growth. Interference with the cholesterol biosynthetic pathway with a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor (e.g., lovastatin) may preferentially slow malignant cell growth and offer a new approach to cancer chemotherapy. To test this hypothesis, we evaluated the effect of lovastatin alone, and as an adjuvant chemotherapeutic agent, on the growth and function of hepatoma tissue culture-4 (HTC-4) cells.

Methods: HTC-4 cells were treated with lovastatin at concentrations of 1, 3, 5, and 10 µM, with mitomycin-C at concentrations of 10, 25, 50, and 100 nM, or with combinations of the two drugs. Cell growth was evaluated by daily cell counts and substrate adhesion to fibronectin.

Results: Lovastatin alone slowed HTC-4 cell growth at concentrations as low as 1 µM (p<0.01). Mitomycin-C alone slowed HTC-4 cell growth at concentrations of 25 nM and above (p<0.01). Lovastatin added to mitomycin-C-treated cells resulted in a significant adjuvant effect, with cell growth slowed by an additional 20–30% by 1 µM lovastatin and by an additional 43–63% by 5 µM lovastatin, compared to mitomycin-C alone (p<0.01). Lovastatin-treated cells also exhibited decreased adherence to substrate (p<0.05).

Conclusions: Lovastatin is effective alone and as an adjuvant to mitomycin-C in slowing the growth of HTC-4 cells. These in vitro results support further investigation of lovastatin as an adjuvant chemotherapeutic agent in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein JL, Brown MS. Regulation of the mevalonate pathway.Nature 1990;343:425–30.

    Article  CAS  PubMed  Google Scholar 

  2. Alberts AW, Chen J, Kuron G, et al. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutarylcoenzyme A reductase and a cholesterol lowering agent.Proc Natl Acad Sci USA 1980;77:3957–61.

    CAS  PubMed  Google Scholar 

  3. MacDonald JS, Gerson RJ, Kornbrust DJ. Preclinical evaluation of lovastatin.Am J Cardiol 1988;62:16J-27J.

    Article  CAS  PubMed  Google Scholar 

  4. Sinensky M, Beck L, Leonard S, Evans R. Differential inhibitory effects of lovastatin on protein isoprenylation and sterol synthesis.J Biol Chem 1990;265:1937–41.

    Google Scholar 

  5. Maltese W. Induction of differentiation in murine neuroblastoma cells by mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase.Biochem Biophys Res Commun 1984;120:454–60.

    Article  CAS  PubMed  Google Scholar 

  6. Fairbanks KP, Barbu VD, Witte LD, Weinstein IB, Goodman DS. Effects of mevinolin and mevalonate on cell growth in several transformed cell lines.J Cell Physiol 1986;127:216–22.

    Article  CAS  PubMed  Google Scholar 

  7. Schneider PD, Chan EK, Guzman IJ, Rucker RD, Varco RL, Buchwald H. Retarding Novikoff tumor growth by altering host rat cholesterol metabolism.Surgery 1980;87:409–16.

    CAS  PubMed  Google Scholar 

  8. Maltese WA, Defendini R, Green RA, Sheridan KM, Donley DK. Suppression of murine neuroblastoma growth in vivo by mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase.J Clin Invest 1985;76:1748–54.

    CAS  PubMed  Google Scholar 

  9. Schafter WR, Kim R, Sterne R, Thorner J, Kim S, Rine J. Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans.Science 1989;245:379–85.

    Google Scholar 

  10. Casey PJ, Solski PA, Der CJ, Buss JE. p21ras is modified by a farnesyl isoprenoid.Proc Natl Acad Sci USA 1989;86:8323–7.

    CAS  PubMed  Google Scholar 

  11. Sebti SM, Tkalcevic GT, Jani JP. Lovastatin, a cholesterol biosynthesis inhibitor, inhibits the growth of human H-ras oncogene transformed cells in nude mice.Cancer Commun 1991;3:141–7.

    CAS  PubMed  Google Scholar 

  12. Morris TJ, Palm SL, Pena J, Furcht LT, Buchwald H. Inhibition of hepatoma tissue culture-4 cell growth by lovastatin: a novel chemotherapeutic strategy.Surg Forum 1991;42:452–4.

    Google Scholar 

  13. Kita T, Brown MS, Goldstein JL. Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in livers of mice treated with mevinolin, a competitive inhibitor of the reductase.J Clin Invest 1980;66:1094–100.

    CAS  PubMed  Google Scholar 

  14. Engvall E, Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen.Int J Cancer 1977;20:1–5.

    CAS  PubMed  Google Scholar 

  15. Smith DE, Mosher DF, Johnson RB, Furcht LT. Immunological identification of two sulfhydryl-containing fragments of human plasma fibronectin.J Biol Chem 1982;257:5831–8.

    CAS  PubMed  Google Scholar 

  16. Thompson EB, Tomkins GM, Curran JF. Induction of tyrosine α-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line.Proc Natl Acad Sci USA 1966;56:296–303.

    CAS  PubMed  Google Scholar 

  17. Seglen PO. Preparation of isolated rat liver cells. In: Prescott DM, ed.Methods in cell biology XIII. New York: Academic Press, 1976:29–83.

    Google Scholar 

  18. West MA, Billiar TR, Curran RD, Hyland BJ, Simmons RL. Evidence that rat Kupffer cells stimulate and inhibit hepatocyte protein synthesis in vitro by different mechanisms.Gastroenterology 1989;96:1572–82.

    CAS  PubMed  Google Scholar 

  19. Palm SL, Furcht LT. Production of laminin and fibronectin by Schwannoma cells: cell-protein interactionsin vitro and protein localization in peripheral nervesin vivo.J Cell Biol 1983;96:1218–21.

    Article  CAS  PubMed  Google Scholar 

  20. Montgomery DC.Design and analysis of experiments, 3rd ed. New York: John Wiley and Sons, 1991:50–81.

    Google Scholar 

  21. Siperstein MD, Fagan VM, Morris HP. Further studies on the depletion of the cholesterol feedback system in hepatomas.Cancer Res 1966;26:7–11.

    CAS  PubMed  Google Scholar 

  22. Siperstein MD, Gyde AM, Morris HP. Loss of feedback control of hydroxymethylglutaryl coenzyme A reductase in hepatomas.Proc Natl Acad Sci USA 1971;68:315–7.

    CAS  PubMed  Google Scholar 

  23. Siperstein MD, Luby LJ. Control of cholesterol synthesis in normal and malignant tissue. In: Neuhaus OW, Halver JE, eds.Fish in research. New York: Academic Press, 1969:87–102.

    Google Scholar 

  24. Brown MS, Goldstein JL, Siperstein MD. Regulation of cholesterol synthesis in normal and malignant tissue.Fed Proc 1973;32:2168–73.

    CAS  PubMed  Google Scholar 

  25. Larsson O, Barrios C, Latham C, Ruiz J, Zetterberg A, Zickert P, Wejde J. Abolition of mevinolin-induced growth inhibition in human fibroblasts following transformation by simian virus 40.Cancer Res 1989;49:5605–10.

    CAS  PubMed  Google Scholar 

  26. DeClue JE, Vass WC, Papageorge AG, Lowy DR, Willumsen BM. Inhibition of cell growth by lovastatin is independent of ras function.Cancer Res 1991;51:712–7.

    CAS  PubMed  Google Scholar 

  27. Jakobisiak M, Bruno S, Skierski J, Darzynkiewicz Z. Cell cycle-specific effects of lovastatin.Proc Natl Acad Sci USA 1991;88:3628–32.

    CAS  PubMed  Google Scholar 

  28. Lown JW. The molecular mechanism of anti-tumor action of the mitomycins. In: Carter SK, Crooke ST, eds.Mitomy-cin-C current status and new developments. New York: Academic Press, 1979:5–26.

    Google Scholar 

  29. Jackson JH, Cochrane CG, Bourne JR, Solski PA, Buss JE, Der CJ. Farnesol modification of kirsten-ras exon 4B protein is essential for transformation.Proc Natl Acad Sci USA 1990;87:3042–6.

    CAS  PubMed  Google Scholar 

  30. Kitten GT, Nigg EA. The CaaX motif is required for isoprenylation, carboxyl methylation, and nuclear membrane association of lamin B2.J Cell Biol 1991;113:13–23.

    Article  CAS  PubMed  Google Scholar 

  31. Wolda SL, Glomet JA. Evidence for modification of lamin B by a product of mevalonic acid.J Biol Chem 1988;263:5997–6000.

    CAS  PubMed  Google Scholar 

  32. Beck LA, Hosick TJ, Sinensky M. Incorporation of a product of mevalonic acid metabolism into proteins of Chinese hamster ovary cell nuclei.J Cell Biol 1988;107:1307–16.

    Article  CAS  PubMed  Google Scholar 

  33. Raz A, Geiger B. Altered organization of cell-substrate contacts and membrane-associated cytoskeleton in tumor cell variants exhibiting different metastatic capabilities.Cancer Res 1982;42:5183–90.

    CAS  PubMed  Google Scholar 

  34. Raz A, Zoller M, Ben-Ze'ev A. Cell configuration and adhesive properties of metastasizing and non-metastasizing BSp73 rat adenocarcinoma cells.Exp Cell Res 1986;162:127–41.

    Article  CAS  PubMed  Google Scholar 

  35. Fenton RG, Kung H, Longo D, Smith M. Regulation of intracellular actin polymeration by prenylated cellular proteins.J Cell Biol 1992;117:347–56.

    Article  CAS  PubMed  Google Scholar 

  36. Estep TN, Mountcastle DB, Biltonen RL, Thompson TE. Studies on the anomolous thermotropic behavior of aqueous dispersions of dipalmitoylphosphatidylcholine-cholesterol mixtures.Biochemistry 1978;17:1984–9.

    Article  CAS  PubMed  Google Scholar 

  37. Chapman D, Penkett SA. Nuclear magnetic resonance spectroscopic studies of the interaction of phospholipids with cholesterol.Nature 1966;211:1304–5.

    CAS  PubMed  Google Scholar 

  38. Oldfield E, Chapman D. Effects of cholesterol and cholesterol derivatives on hydrocarbon chain mobility in lipids.Biochem Biophys Res Commun 1971;43:610–6.

    CAS  PubMed  Google Scholar 

  39. Cogan U, Shinitzky M, Weber G, Nishida T. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorecent probes.Biochemistry 1973;12:521–8.

    Article  CAS  PubMed  Google Scholar 

  40. Raz A, Ben-Ze'ev A. Modulation of the metastatic capability in B16 melanoma by cell shape.Science 1983;221:1307–10.

    CAS  PubMed  Google Scholar 

  41. Diomede L, Piovani B, Modest E, Noseda A, Salmona M. Increased ether lipid cytotoxicity by reducing membrane cholesterol content.Int J Cancer 1991;49:409–13.

    CAS  PubMed  Google Scholar 

  42. Kort WJ, Hulsmann WC, Stehman TE. Modulation of metastatic ability by inhibition of cholesterol synthesis.Clin Exp Metastasis 1989:7:517–23.

    CAS  PubMed  Google Scholar 

  43. Littman ML, Taguchi T, Mosbach EH. Effect of cholesterol-free, fat-free diet and hypocholesterolemic agents on growth of transplantable animal tumors.Cancer Chemother Rep 1966;50:25–44.

    CAS  PubMed  Google Scholar 

  44. Littman ML, Taguchi T, Shimizu Y. Retarding effect of vitamin deficient and cholesterol-free diets on growth of sarcoma 180.Proc Soc Exp Biol Med 1964;116:95–101.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, T.J., Palm, S.L., Furcht, L.L. et al. Effect of lovastatin alone and as an adjuvant chemotherapeutic agent on hepatoma tissue culture-4 cell growth. Annals of Surgical Oncology 2, 266–274 (1995). https://doi.org/10.1007/BF02307034

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02307034

Key Words

Navigation