Skip to main content
Log in

Microwave dispersion of some polar liquids

  • Published:
Applied Scientific Research, Section B

Summary

The chief purpose of the present investigation is the measurement and analysis of the microwave dispersion of some polar liquids. An outline of the problem and a historical survey of experimental work on the dielectric behaviour of polar liquids are given in Chapter I. A number of theoretical expressions for the dielectric constant in the static case and their extension to alternating fields are reviewed in Chapter II. A formula for the dielectric dispersion in liquids composed of ellipsoidal molecules is derived and its consequences are investigated. Chapter III deals with the experimental details of the investigation. A new microwave measuring technique is described, accurate in most cases to about 1% for both the real and imaginary part of є. In order to make the theories applicable, the investigation has been restricted mainly to polar liquids of simple structure, in particular to the mono-substituted benzenes. The results refer to wavelengths down to 0.8 cm. The analysis of our measurements in Chapter IV reveals discrepancies between the dielectric constant ε, extrapolated from the side of cm-waves, and n2, the square of the refractive index, extrapolated from measurements in the visible and infrared. This leads to assuming an additional region of dipolar absorption in the neighbourhood of 1 mm. The mechanism to which such an absorption may be due is sought in the strong local fields exerted on a molecule by its immediate neighbours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Debije, P., Polare Molekeln, 1st ed. Leipzig, 1929, Chapter V.

  2. Onsager, L., J. Am. Chem. Soc.58 (1936) 1486.

    Article  Google Scholar 

  3. Kirkwood, J. G., J. Chem. Phys.7 (1939) 911.

    Article  ADS  Google Scholar 

  4. Cartwright, C. H. and Errera, J., Proc. Roy. Soc.154 A (1936) 183.

    Google Scholar 

  5. Pauling, L., Phys. Rev.36 (1930) 430.

    Article  ADS  Google Scholar 

  6. Debije, P., Phys. Z.36 (1935) 100, 193.

    Google Scholar 

  7. Debije, P. and Ramm, W., Ann. Phys. Lpz.28 (1937) 28.

    Google Scholar 

  8. Gorter, C. J. and Kronig, R., Physica3 (1936) 1009.

    Article  MATH  Google Scholar 

  9. Lampa, A., Wied. Ann.61 (1897) 79.

    Google Scholar 

  10. Drude, P., Ann. Phys. Lpz.61 (1897) 466.

    ADS  Google Scholar 

  11. Drude, P., Ann. Phys. Lpz.8 (1902) 336;16 (1905) 116.

    Article  ADS  Google Scholar 

  12. Colley, A. R., Phys. Z.11 (1910) 324.

    Google Scholar 

  13. Eckert, F., Verh. dtsch. Phys. Ges.15 (1913) 307.

    Google Scholar 

  14. Rubens, H., Verh. dtsch. Phys. Ges.17 (1915) 315.

    Google Scholar 

  15. Ruckert, E., Ann. Phys. Lpz.55 (1918) 151.

    Article  ADS  Google Scholar 

  16. Mobius, W., Ann. Phys. Lpz.62 (1920) 293, 307.

    Article  ADS  Google Scholar 

  17. Weichmann, R., Phys. Z.22 (1921) 535.

    Google Scholar 

  18. Weichmann, R., Ann. Phys. Lpz.66 (1921) 501.

    ADS  Google Scholar 

  19. Tear, J. D., Phys. Rev.21 (1923) 611.

    Article  ADS  Google Scholar 

  20. Malsch, J., Ann. Phys. Lpz.12 (1932) 865.

    Article  ADS  Google Scholar 

  21. Krause, K., Phys. Z.35 (1934) 687.

    Google Scholar 

  22. Schmelzer, W., Ann. Phys. Lpz.28 (1937) 35.

    Google Scholar 

  23. Fischer, E., Phys. Z.21 (1939) 645.

    Google Scholar 

  24. Mizushima, S., Bull. Chem. Soc. Japan1 (1926) 47, 163.

    Article  Google Scholar 

  25. Mizushima, S., Proc. Imp. Ac. Tokyo5 (1929) 15.

    Google Scholar 

  26. Girard, P. and Abadie, P., C. R. Acad. Sci., Paris,191 (1930) 1300;195 (1932) 119, 217.

    Google Scholar 

  27. Seeberger, A., Ann. Phys. Lpz.16 (1933) 77.

    Article  ADS  Google Scholar 

  28. Esau, A. and Bäz, G., Phys. Z.38 (1937) 774.

    Google Scholar 

  29. Knerr, H. W., Phys. Rev.52 (1937) 1054.

    Article  ADS  Google Scholar 

  30. Kebbel, W., Hochfreq. Techn. u. Elektro Akustik53 (1939) 81.

    Google Scholar 

  31. Heston, W. M., Smyth, Ch. P.a.o., J. Amer. Chem. Soc.70 (1948) 4093, 4102.

    Article  Google Scholar 

  32. Laquer, H. and Smyth, C h. P., J. Amer. Chem. Soc.70 (1948) 4097.

    Article  Google Scholar 

  33. Branin, F. H. and Smyth, C h. P., J. Chem. Phys.20 (1952) 1121.

    Article  ADS  Google Scholar 

  34. Brot, C., Magat, M. and Reinisch, L., Kolloid Z.134 (1953) 101.

    Article  Google Scholar 

  35. Haggis, G. H., Hasted, J. B. and Buchanan, T. J., J. Chem. Phys.20 (1952) 1452.

    Article  ADS  Google Scholar 

  36. Hasted, J. B. and El Sabeh, S.H.M., Trans. Faraday Soc.49 (1953) 1003.

    Article  Google Scholar 

  37. Lane, J. A. and Saxton, J. A., Metereological factors in Radiowave Propagation, 1946, p. 292.

  38. Lane, J. A. and Saxton, J. A., Proc. Roy. Soc.213 A (1952) 400, 473.

    ADS  Google Scholar 

  39. Heston, W. M., Smyth, Ch. P.a.o., J. Amer. Chem. Soc.72 (1950) 3443, 3447.

    Article  Google Scholar 

  40. Whiffen, D. H. and Thompson, H. W., Trans. Faraday Soc.42 A (1946) 114, 122.

    Article  Google Scholar 

  41. Whiffen, D. H., J. Amer. Chem. Soc.70 (1948) 2452.

    Article  Google Scholar 

  42. Whiffen, D. H., Trans. Faraday Soc.46 (1950) 124.

    Article  Google Scholar 

  43. Heston, W. M., Smyth, Ch. P. a.o., J. Amer. Chem. Soc.72 (1950) 2071, 3443.

    Article  Google Scholar 

  44. Curtis, A. J., Smyth, C h. P. a.o., J. Amer. Chem. Soc.74 (1952) 644.

    Article  Google Scholar 

  45. Cole, K. S. and Cole, R. H., J. Chem. Phys.9 (1941) 341.

    Article  ADS  Google Scholar 

  46. Böottcher, C. J. F., Physica5 (1938) 635.

    Article  ADS  Google Scholar 

  47. Cole, R. H., J. Chem. Phys.6 (1938) 385.

    Article  ADS  Google Scholar 

  48. Fuoss, R. M. and Kirkwood, J. G., J. Amer. Chem. Soc.63 (1941) 385.

    Article  Google Scholar 

  49. Bolton, H. C., J. Chem. Phys.16 (1948) 486.

    Article  ADS  Google Scholar 

  50. Fischer, E., Ann. Phys. Lpz.6 (1949) 117.

    Google Scholar 

  51. Scholte, Th. G., Physica15 (1949) 437.

    Article  ADS  Google Scholar 

  52. Scholte, Th. G., Thesis Leyden 1950.

  53. Poley, J. Ph., J. Chem. Phys.22 (1954) 1466.

    ADS  Google Scholar 

  54. Abbott, J. A. and Bolton, H. C., Trans. Faraday Soc.48 (1952) 422.

    Article  Google Scholar 

  55. Buckingham, A. D., Trans. Faraday Soc.49 (1953) 881.

    Article  Google Scholar 

  56. Buckingham, A. D., Austr. J. Chem.6 (1953) 93.

    Google Scholar 

  57. Osborne, J. A., Phys. Rev.67 (1945) 351.

    Article  ADS  Google Scholar 

  58. Le Fèvre, R. J. W. and Le Fèvre, C. G., Austr. J. Chem.7 (1954) 33.

    Google Scholar 

  59. Timmermans, J., Phys. Chem. Constants of pure Organic Compounds 1st ed., Amsterdam 1950.

  60. Lab. for Phys. Chemistry, Univ. of Leyden, unpublished measurements.

  61. Moore, E. M. and Hobbs, M. E., J. Amer. Chem. Soc.71 (1949) 411.

    Article  Google Scholar 

  62. Mc Alpine, K. B. and Smyth, C h. P., J. Chem. Phys.3 (1935) 55.

    Article  ADS  Google Scholar 

  63. Groves, L. G. and Sugden, S., J. Chem. Soc. (1934,II) 1094.

    Article  Google Scholar 

  64. Hurdis, E. C. and Smyth, C h. P., J. Amer. Chem. Soc.64 (1942) 2212.

    Article  Google Scholar 

  65. National Physical Laboratory, Teddington, England.

  66. Ball, A. O., J. Chem. Soc. (1930) 570.

  67. Lide, D. R., J. Chem. Phys.22 (1954) 1577.

    Article  ADS  Google Scholar 

  68. Debije, P., Chem. Rev.19 (1936) 171.

    Article  Google Scholar 

  69. Kronig, R., Z. techn. Phys.19 (1938) 509.

    Google Scholar 

  70. Kronig, R., Physica5 (1938) 65.

    Article  ADS  Google Scholar 

  71. Fröhlich, H., J. Instn. Elect. Engrs91 1 (1944) 456.

    Google Scholar 

  72. Fröhlich, H., Theory of Dielectrics, 1st ed. Oxford 1949.

  73. Poley, J. P h., l’Onde Electrique, to be published.

  74. Crouch, G. E., J. Chem. Phys.16 (1948) 364.

    Article  ADS  Google Scholar 

  75. Poley, J. Ph., Communication U.R.S.I.-conference, Sydney, 1952.

  76. Dakin, T. W. and Works, C. W., J. Appl. Phys.18 (1947) 789.

    Article  ADS  Google Scholar 

  77. Toppniga, M. L., Tijdschr. Ned. Radiogenoot.16 (1951) 185.

    Google Scholar 

  78. Trier, A. A. T h. M. van, Appl. Sci. Res.B3 (1953) 305.

    Google Scholar 

  79. Loor, G. P. de, unpublished measurements.

  80. Hill, Nora E., Bedford College, London, private communication.

  81. Roberts, J. E. and Cook, H. F., Brit. J. Appl. Phys.3 (1952) 33.

    Article  ADS  Google Scholar 

  82. Mecke, R. and Reuter, A., Z. Naturforsch.4 A (1949) 368.

    ADS  Google Scholar 

  83. M.I.T. Tables of Dielectric Materials, published in “Dielectric Materials and applications”, New York, 1954.

  84. Roberts, S. and Hippel, A. von, J. Appl. Phys.17 (1946) 610.

    Article  ADS  Google Scholar 

  85. Poley, J. Ph., J. Chem. Phys.23 (1955) 405.

    ADS  Google Scholar 

  86. Piekara, A., Bull, Int. Acad. Polon. Sc. (1939) 168.

  87. Filippov, M. I., J. of Phys. U.S.S.R.1 (1939) 479.

    Google Scholar 

  88. Boer, J. H. de, Ned. T. Natuurk.15 (1949) 205.

    Google Scholar 

  89. Kortüm, G., Z. angew. Chem.64 (1952) 4.

    Article  Google Scholar 

  90. Selman, J., Thesis Amsterdam 1932, p. 105.

  91. Giulotto, L. a.o., J. Chem. Phys.22 (1954) 1143.

    ADS  Google Scholar 

  92. Hill, Nora E., Proc. Phys. Soc.67 B (1954) 149.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poley, J.P. Microwave dispersion of some polar liquids. Appl. sci. Res. 4, 337–387 (1955). https://doi.org/10.1007/BF02920014

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920014

Keywords

Navigation