Skip to main content
Log in

Basic theory and experimental techniques of the strain-gradient method

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The theories of presently used experimental methods of stress and deformation analysis which employ radiant energy as a detector are based on the assumption that light propagates rectilinearly within both undeformed and deformed bodies which are initially homogeneous and isotropic when diffraction phenomena are negligible. This assumption is not correct: light propagation within deformed bodies is nonrectilinear in a general case. Although this has already been observed and applied practically by some researchers in photoelasticity, it has not so far been generally acknowledged and accepted in experimental mechanics.

On the basis of empirical data produced by the authors in the period 1948–1983, we present theories and foundations of the techniques of a new experimental method which is based on the relations between stress/strain gradients and curvatures of light beams. This method is called the strain-gradient method or, less rigorously, gradient photoelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aben, H., Krasnowski, B.R. andPindera, J.T., “On the Nonrectilinear Propagation of Light in Integrated Photoelasticity of Axisymmetric Body” (in Russian),Eesti NSV Teaduste Akadeemia Toimetised,31,Köide Füüsika Matemaatika (1),65–74 (1982).

    Google Scholar 

  2. Aben, H.K., “Integrated Photoelasticity of Axisymmetric Bodies,”Opt. Eng.,21 (718),689–695 (1982).

    Google Scholar 

  3. Aben, H.K., Krasnowski, B.R. andPindera, J.T., “Nonrectilinear Light Propagation in Integrated Photoelasticity of Axisymmetric Bodies,”Trans. CSME,8, (4),195–200 (1984).

    Google Scholar 

  4. Acloque, P. andGuillemet, G., “Method for the Photoelastic Measurement of Stresses ‘in Equilibrium in the Thickness’ of a Plate (Particular cases of toughened glass and bent glass),”Selected Papers on Stress Analysis, Chapman and Hall Ltd., London, 71 (1959).

    Google Scholar 

  5. Bokshtein, M.F., “On the Resolving Power of the Polarizing System for Stress Investigations (in Russian),”Zhurnal Tekhnickeskoi Fiziki,19 (10),1103 (1949).

    Google Scholar 

  6. Born, M. andWolf, E., Principles of Optics, 5th Ed., Pergamon Press, Oxford (1975).

    Google Scholar 

  7. Coker, E.G. andFilon, L.N.G., A Treatise on Photoelasticity, 2nd Ed., University Press, Cambridge (1957).

    Google Scholar 

  8. Filon, L.N.G., “Preliminary Note on a New Method of Measuring Directly the Double-Refraction in Strained Glass,”Proc. Roy. Soc., Series A 79, 440–442 (1907).

    Google Scholar 

  9. Filon, L.N.G., “Measurements of the Absolute Indices of Refraction in Strained Glass,”Proc. Roy. Soc., Series A 83, 572–579 (1910).

    Google Scholar 

  10. Hecker, F.W. andPindera, J.T., “Influence of Stress Gradient on Direction of Light Propagation in Photoelastic Specimens,”VDI-Berichte (313),745–754 (1978).

    Google Scholar 

  11. Hecker, F.W., Kepich, T.Y. andPindera, J.T., “Neglected Factor in Photoelasticity: Non-rectilinear Light Propagation in Stressed Bodies and its Significance,”Proc. 8th All-Union Conf. Photoelasticity, Akademia Nauk Estonskoi SSR, Tallinn,1,117–123 (1979).

    Google Scholar 

  12. Hecker, F.W., Kepich, T.Y. andPindera, J.T., “Further Studies of the Stress-Distortion of the Light Path in Photoelastic Specimens,”Proc. CANCAM 79, Univ. de Sherbrooke, Sherbrooke, Quebec,1,335–336 (1979).

    Google Scholar 

  13. Hecker, F.W., Kepich, T.Y. andPindera, J.T., “Non-rectilinear Optical Effects in Photoelasticity Caused by Stress Gradients,”Optical Methods in Mechanics of Solids, ed. A. Lagarde, Sijthoff & Noordhoff, Alphen aan den Rijn, 123–134 (1981).

    Google Scholar 

  14. Holder, D.W. and North, R.J., Schlieren Methods, Her Majesty's Stationery Office (1963).

  15. Hondros, G.The Evaluation of Poisson's Ratio and the Modulus of Materials of a Low Tensile Resistance by the Brazilian (Indirect Tensile) Test with Particular Reference to Concrete,”Australian J. Appl. Sci.,10 (2),243–268 (1959).

    Google Scholar 

  16. Kappus, R., “Strenge Lösung fur den durch zwei Einzelkräfte belasteten Kreisring,”ZAMM,35, (6/7),210–231 (1955).

    MATH  MathSciNet  Google Scholar 

  17. Laermann, K.-H., Uber den Einfluss der Spannungsgradienten auf den Lichtweg in optisch anisotropen Medien, VDI-Verlag, Dusseldorf (1985).

    Google Scholar 

  18. Manogg, P., “Die Lichtablenkung durch eine elastisch beanspruchte Platte und die Schattenfiguren von Kreis-und Risskerbe,”Glastechnische Berichte,39 (7),323–379 (1966).

    Google Scholar 

  19. Marchand, E.W., Gradient Index Optics, Academic Press, New York (1978).

    Google Scholar 

  20. Pindera, J.T., “Technique of Photoelastic Investigations of Plane Stress State” (in Polish),Rozprawy Inzynierskie,3 (1),109 (1955).

    Google Scholar 

  21. Pindera, J.T., “On the Transfer Properties of Photoelastic Systems,”Proc. 7th All-Union Conf. Photoelasticity, Akademia Nauk Estonskoi SSR, Tallinn,1,48–63 (1971).

    Google Scholar 

  22. Pindera, J.T., “Response of Photoelastic Systems,”Trans. CSME,2 (1),21–30 (1973–1974).

    Google Scholar 

  23. Pindera, J.T., Mazurkiewicz, S.B. and Khattab, M.A., “Stress Field in Circular Disk Loaded along Diameter: Discrepancies Between Analytical and Experimental Results,” SESA Paper No. CR-14 (1978).

  24. Pindera, J.T., “Foundations of Experimental Mechanics: Principles of Modelling, Observation, and Experimentation,”New Physical Trends in Experimental Mechanics, ed. J.T. Pindera, Springer-Verlag, Wien-New York, 199–327 (1981).

    Google Scholar 

  25. Pindera, J.T., “Elements of More Rigorous Theory and Techniques of the Isodyne Method and their Applications to other Optical Methods,”Optical Methods in Mechanics of Solids, ed. A. Lagarde Sijthoff & Noordhoff, Alphen aan den Rijn, 103–111 (1981).

    Google Scholar 

  26. Pindera, J.T., Hecker, F.W. and Krasnowski, B.R., “A New Experimental Method: Gradient Photoelasticity,” Proc. 8th Canadian Congr. Appl. Mech., Moncton, Univ. de Moncton, 517–518 (1981).

  27. Pindera, J.T., Hecker, F.W. andKrasnowski, B.R., “Gradient Photoelasticity,”Mech. Res. Comm.,9 (3),197–204 (1982).

    Article  Google Scholar 

  28. Pindera, J.T., “New Development in Photoelastic Studies: Isodyne and Gradient Photoelasticity,”Opt. Eng.,21 (4),672–678 (July/Aug.1982).

    Google Scholar 

  29. Pindera, J.T. andKrasnowski, B.R., “Determination of Stress Intensity Factors in Thin and Thick Plates Using Isodyne Photoelasticity,”Fracture Problems and Solutions in the Energy Industry, ed. A. Simpson, Pergamon Press, New York, 147–156 (1982).

    Google Scholar 

  30. Pindera, J.T. and Krasnowski, B.R., “Theory of Elastic and Photoelastic Isodynes,” Solid Mechanics Div. Papers, Univ. of Waterloo, Paper No. 184 (Oct., 1983).

  31. Pindera, J.T., “New Research Perspectives Opened by Isodyne and Strain Gradient Photoelasticity,”Photoelasticity, ed., M. Nisida andK. Kawata, Springer-Verlag, New York, 193–202 (1986).

    Google Scholar 

  32. Pirard, A., La Photoélasticité, Dunod, Paris (1947).

    Google Scholar 

  33. Post, D., “Optical Analysis of Photoelastic Polariscopes,”Experimental Mechanics,10 (1),15–23 (1970).

    Article  Google Scholar 

  34. Ramachandran, G.N. andRamaseshan, S., “Crystal Optics,”Handbuch der Physik, ed. S. Flügge, Springer Verlag, Berlin 25 (1)1 (1961).

    Google Scholar 

  35. Schardin, H., “Die Schlierenverfahren und ihre Anwendungen (Shadow Methods and Their Applications),”Ergebnisse der exakten Naturwissenschaften,20,303–437 (1942).

    MATH  Google Scholar 

  36. Schwieger, H., “A New Application of Differential Interferometry for Stress Analysis,”Experimental Mechanics,24 (4),277–285 (1984).

    Article  Google Scholar 

  37. Stavroudis, O.N., The Optics of Rays, Wavefronts, and Caustics, Academic Press, New York (1972).

    Google Scholar 

  38. Theocaris, P.S., “Local Yielding around a Crack Tip in Plexiglas,”J. Appl. Mech.,37,409–415, (1970).

    Google Scholar 

  39. Vasil'ev, L.A., Schlieren Methods, Israel Prog. for Sci. Translations, Jerusalem (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pindera, J.T., Hecker, F.W. Basic theory and experimental techniques of the strain-gradient method. Experimental Mechanics 27, 314–327 (1987). https://doi.org/10.1007/BF02318098

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02318098

Keywords

Navigation