Skip to main content
Log in

Electrochromatography in packed tubes using 1.5 to 50 μm silica gels and ODS bonded silica gels

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Electrochromatography (that is HPLC where the eluent is driven along the column by electro-osmosis using fields of up to 100 kV m−1) promises plate efficiencies for HPLC which are comparable to those attained in capillary gas chromatography, but this requires that narrow-bore columns can be successfully packed with submicron particles. This paper demonstrates that we have now moved a considerable distance towards this goal. We show (1) that, following theory, there is no evidence of any reduction in electroosmotic velocity in columns packed with particles down to 1.5 μm diameter, (2) that reduced plate heights as low as unity are attainable for unretained solutes using both slurrypacked and drawn-packed columns 30 to 200 μm bore and up to 1 m long when packed with conventional 3 and 5 μm silica gels or with 1.5 μm impermeable silica spheres, (3) that columns driven electrically show higher plate efficiencies than identical columns driven by pressure, and (4) that 100,000 plate HPLC separations can be achieved in relatively short times of 30 minutes using in situ derivatised drawn packed capillaries containing 3 and 5 μm ODS-silica gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c:

Concentration of electrolyte mol m−3

Dm :

Diffusion coefficient of analyte in the mobile zone m2s−1

dp :

Particle diameter m (or μm)

d:

Capillary internal diameter m (or μm)

d0 :

Capillary outer diameter m (or μm)

E:

Electric Field V m−1

F:

Faraday constant 96500 C mol−1

H:

Plate height H.E.T.P. m (or μm)

I:

Electrical current A

K:

Thermal conductivity of electrolyte W m−1 K−1

L:

Column length m (or mm)

N:

Number of theoretical plates

ΔP:

Pressure drop across column N m−2 (or bar)

Q:

Heat generated per unit time per unit volume of electrolyte W m−3 s−1

R:

Universal gas constant 8.314 J mol−1 K−1

T:

Absolute temperature K

tb :

Effective peak or front start time see text

te :

Effective peak or front end time see text

t1 :

Elution time minus peak or front standard deviation see text

tm :

Elution time of an unretained species s

tr :

Elution time plus peak or front standard deviation see text

u:

Linear velocity m s−1 (or mm s−1)

V:

Voltage across full length of capillary V (or kV)

ΔTair :

Temperature excess in air surrounding column K

ΔTcore :

Temperature excess in column core K

δ:

Electrical double layer thickness m (or nm)

ɛr :

Relative permittivity dimensionless

ɛ0 :

Permittivity of a vacuum 8.85×10−12C2N−1m−2

ϕ:

Dimensionless flow resistance parameter dimensionless

λ:

Tortuosity Factor dimensionless

θ:

Angle between a given interparticle channel and the capillary axis

η:

Eluent viscosity N s m−2

σ:

Surface excess charge density C m−2

ζ:

Zeta potential V (or mV)

References

  1. J. H. Knox, Chromatographia26, 329 (1988).

    Article  CAS  Google Scholar 

  2. J. W. Jorgenson, K. D. Lukacs, J. Chromatogr.218, 209 (1981).

    CAS  Google Scholar 

  3. S. Terabe, K. Otsuka, T. Ando, Anal. Chem.57, 834 (1985).

    Article  CAS  Google Scholar 

  4. A. Guttman, A. Paulus, A. S. Cohen, N. Grinberg, B. L. Karger, J. Chromatogr.448, 41 (1988).

    Article  CAS  Google Scholar 

  5. J. H. Knox, I. H. Grant, Chromatographia24, 135 (1987).

    CAS  Google Scholar 

  6. S. Wu, N. J. Dovichi, J. Chromatogr.480, 37 (1989).

    Article  Google Scholar 

  7. R. A. Wallingford, A. G. Ewing, Anal. Chem.60, 1975 (1988).

    Google Scholar 

  8. V. Pretorius, B. J. Hopkins, J. D. Schieke, J. Chromatogr.99, 23 (1974).

    CAS  Google Scholar 

  9. D. J. Shaw “Introduction to Colloid and Surface Chemistry”, Butterworths, London, 1980.

    Google Scholar 

  10. C. L. Rice, R. Whitehead, J. of Phys. Chem.,69, 4017 (1965).

    CAS  Google Scholar 

  11. J. J. Van Deemter, F. J. Zuiderweg, A. Klinkenberg, Chem. Eng. Sci.,5, 271 (1956).

    Google Scholar 

  12. J. H. Knox, in “Techniques in Liquid Chromatography”, Ed. Simpson, Wiley Heyden, UK, 1982, p. 1–56.

    Google Scholar 

  13. J. H. Knox, L. McLaren, Anal. Chem.36, 1477 (1964).

    Article  CAS  Google Scholar 

  14. J. K. Roberts, “Heat and Thermodynamics” 3rd. Edn., Blackie, London, 1947, p. 245–251.

    Google Scholar 

  15. J. H. Knox, K. A. McCormack, 18th Int. Symp. on Chromatogr. 23–28 Sept. 1990, Amsterdam, Abst. No. Fr-L-08.

  16. T. S. Stevens, H. J. Cortes, Anal. Chem.55, 1365 (1983).

    CAS  Google Scholar 

  17. N. Tanaka, H. Kinoshita, M. Araki, T. Tsuda, Int. Symp. on HPLC, Kyoto, Japan, Jan. 28th–30th, 1985. Abs. No. 50128.

  18. F. G. Yang, J. Chromatogr.236, 265 (1982).

    Article  CAS  Google Scholar 

  19. D. Ishii, T. Takeuchi, J. Chromatogr.255, 349 (1983).

    Article  CAS  Google Scholar 

  20. H. Alborn, G. Stenhagen, J. Chromatogr.323, 47 (1985).

    Article  CAS  Google Scholar 

  21. T. Tsuda, I. Tanaka, G. Nakagawa, Anal. Chem.56, 1249 (1984).

    Article  CAS  Google Scholar 

  22. A. G. Rowley “Unpublished”, University of Edinburgh, UK.

  23. W. Stober, A. Fink, E. Bohn, J. Colloid and Interface Sci.,26, 62 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knox, J.H., Grant, I.H. Electrochromatography in packed tubes using 1.5 to 50 μm silica gels and ODS bonded silica gels. Chromatographia 32, 317–328 (1991). https://doi.org/10.1007/BF02321428

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02321428

Key Words

Navigation