Skip to main content
Log in

Analysis of strain localization during tensile tests by digital image correlation

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an imaging technique developed to study the strain localization phenomena that occur during the tension of thin, flat steel samples. The data are processed using digital speckle image correlation to derive the two in-plane components of the displacement vectors. The authors observe that the calculation of the intercorrelation function reveals a systematic error and propose a numerical method to limit its influence. Plastic incompressibility and thin-sheet assumptions are used to derive the third displacement component and, hence, the various strain and strain rate components. Numerous checks are presented at each step in processing the data to determine the final accuracy of the strain measurements. It is estimated that this accuracy is quite sufficient to track the inception and the development of localization. Examples of possible application are presented for mild steels whose strain localization mechanisms appear to be precocious and gradual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ladevèze, P., Mécanique non linéaire des structures: Nouvelles approches et méthodes de calcul non incrémentales, Hermès, Paris (1996).

    Google Scholar 

  2. Considere, A., “Mémoire sur l'emploi du fer et de l'acier dans les constructions,”Annales des Ponts et Chaussées,9,574 (1885).

    Google Scholar 

  3. Hill, R., “A General Theory of Uniqueness and Stability in Elasticplastic Solids,”J. Mech. Phys. Solids,6,236–249 (1958).

    MATH  Google Scholar 

  4. Rice, J.R., “The Localization of Plastic Deformation,”Theory of Applied Mechanics, W.T. Koiter, ed., North-Holland, Amsterdam (1976).

    Google Scholar 

  5. Bai, Y.L., “Thermo-plastic Instability in Simple Shear,”J. Mech. Phys. Solids,30,195–207 (1982).

    MATH  Google Scholar 

  6. Fressengeas, C. andMolinari, A., “Inertia and Thermal Effects on the Localization of Plastic Flow,”Acta Metall.,33,387–396 (1985).

    Google Scholar 

  7. Marchand, A. andDuffy, J., “An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel,”J. Mech. Phys. Solids,36,251–283 (1988).

    Google Scholar 

  8. Swift, H.W., “Plastic Instability under Plane Stress,”J. Mech. Phys. Solids,1,1–18 (1952).

    Google Scholar 

  9. Marciniak, Z. andKuczynski, K., “Limit Strains in the Process of Stretch Forming Sheet Metal,”Int. J. Mech. Sci.,9,609–620 (1967).

    Article  Google Scholar 

  10. Zener, C. andHollomon, J.H., “Effect of Strain-rate upon Plastic Flow of Steel,”J. Appl. Phys.,15,22–32 (1944).

    Article  Google Scholar 

  11. Bailey, H.H., Blackwell, F.W., Lowery, C.L., and Ratkovic, J.A., “Image Correlation: Part I. Simulation and Analysis,” Report prepared for United States Air Force Project RAND, R-2057/1-PR (1976).

  12. Chu, T.C., Ranson, W.F., Sutton, M.A., andPeters, W.H., “Application of Digital-image-correlation Techniques to Experimental Mechanics,” EXPERIMENTAL MECHANICS,25,232–244 (1985).

    Article  Google Scholar 

  13. Bruck, H.A., McNeill, S.R., Sutton, M.A., andPeters, W.H., “Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correction,” EXPERIMENTAL MECHANICS,29,261–267 (1989).

    Article  Google Scholar 

  14. Choi, S. andShah, S.P., “Measurement of Deformations on Concrete Subjected to Compression Using Image Correlation,” EXPERIMENTAL MECHANICS,37,307–313 (1997).

    Article  Google Scholar 

  15. Berthaud, Y., Calloch, S., Collin, F., Hild, F., and Ricotti, Y., “Analysis of the Degradation Mechanisms in Composite Materials through a Correlation Technique in White Light,” IUTAM Symposium on Advanced Optical Methods and Application in Solid Mechanics, Poitiers University, France (1998).

  16. Oulamara, A., Tribillon, G., andDuvernoy, J., “Subpixel Speckle Displacement Measurement Using a Digital Processing Technique,”J. Mod. Opt.,37,1201–1211 (1988).

    Google Scholar 

  17. Brigham, E.O., The Fast Fourier Transform, Prentice Hall, Englewood Cliffs, NJ (1974).

    Google Scholar 

  18. Bellanger, M., Traitement numérique du signal—Théorie et pratique, Masson, Paris (1995).

    Google Scholar 

  19. Lenny, P. and Forner, A., “Extensométrie bidimensionnelle: Calibration et incertitudes de mesure,” Conférence Mesures sans contact par procédés optiques, Palavas-les-Flots France (1995).

  20. Thesing, I., “Mesure par corrélation des déplacements et des rotations à partir de figures granulaires,” Rapport, LMT Cachan, France (1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wattrisse, B., Chrysochoos, A., Muracciole, JM. et al. Analysis of strain localization during tensile tests by digital image correlation. Experimental Mechanics 41, 29–39 (2001). https://doi.org/10.1007/BF02323101

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02323101

Key Words

Navigation