Skip to main content
Log in

Consistent matrices in rotor dynamic

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Nel presente lavoro vengono ricavate le espressioni della matrice congruente delle masse e giroscopica per un elemento di albero a sezione costante. Tali espressioni tengono conto sia della deformazione a taglio che dell'inerzia trasversale. I risultati, in termini di velocità critiche e di diagramma di Campbell, per un albero a sezione costante vengono confrontati con soluzioni in forma chiusa di varia complessità. Vengono discussi gli effetti della deformazione a taglio, dell'inerzia trasversale, dello smorzamento e dello sforzo assiale sul comportamento dinamico. Viene inoltre presa in considerazione una distribuzione lineare nota di squilibrio. Il modello cosi ottenuto può venire usato anche per lo studio di sistemi smorzati, purchè lo smorzamento possa essere considerato di tipo «viscoso» o «strutturale». Viene infine mostrata un'applicazione ad un modello in cui si tiene conto anche dello smorzamento e che fa uso della condensazione delle matrici per ridurre l'ordine del problema dinamico.

Summary

The expressions for the consistent mass and gyroscopic matrices for a constant section shaft element are obtained taking into account both shear deformation and transversal inertia. The results are compared with closed form solutions, which are available in simple cases. The results obtained show that the study of the dynamic behaviour of the rotor with a model which includes rotational inertia but not shear deformation is, at least in the case examined, misleading. Formulae for matrix condensation and for taking into account the effects of axial load and of a linear unbalance distribution are given. Damped systems can be studied using the same model, provided that damping can be assumed to be of either viscous or hysteretic type. Some formulations found in the literature are however not considered correct. An application of consistent matrices to a model which includes damping and uses matrix condensation is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

{f}:

vector of the forces due to the unbalance of the element

[g]:

gyroscopic matrix of the element

i :

\(\sqrt { - 1} \)

[k]:

stiffness matrix of the element

l :

shaft length

l e :

length of the element

[m]:

mass matrix of the element

n :

number of elements

r i :

inner radius

r 0 :

outer radius

{q}:

generalized displacements at the nodes

x y z :

system of reference

t :

time

A :

area of the cross section

[C]:

viscous damping matrix

E :

Young's modulus

{F}:

force vector due to the unbalance

F a :

axial force

G :

shear modulus

[G]:

gyroscopic matrix

I :

area moment of inertia of the cross section

[I]:

identity matrix

[K′]:

real part of the stiffness matrix

[K″]:

imaginary part of the stiffness matrix

[M]:

mass matrix

T :

kinetic energy

U :

potential energy

α:

slenderness\(\left( {\alpha = 1\sqrt {A/I} } \right)\)

γ:

shear strain

∈:

«static» unbalance; strain

ζ:

non dimensional coordinate (ζ=z/l e )

η:

loss factor

ϑ:

«dynamic» unbalance

λ:

whirl speed

ν:

Poisson's ratio

ξ η ζ:

rotating system of reference (fixed to the shaft element)

ρ:

density

\(\phi _x ,\phi _y\) :

rotations aboutx andy axes

χ:

shear factor

ω:

spin speed

n :

non rotating element

r :

rotating element

I :

inertial section characteristics, imaginary part

R :

real part

S :

structural section characteristics

References

  1. Nelson H.D., Mc. Vaugh J.M.,The Dynamics of Rotor — Bearing Systems Using Finite Elements, Journ. of Eng. for Industry, may 1976, pp. 593–600.

  2. Zorzi E.S., Nelson H.D.,Finite Element Simulation of Rotor — Bearing Systems with Internal Damping, Journ. of Eng. for Power, jan. 1977, pp. 71–76.

  3. Genta G., Gugliotta A., Brussino G.,Determinazione delle velocità critiche flessionali e tracciamento del Diagramma di Campbell di rotori mediante modelli a parametri concentrati, Il progettista industriale, march 1984.

  4. Nelson H.D.,A Finite Rotating Shaft Element Using Timoshenko Beam Theory, Journal of Mechanical Design, vol. 102, oct. 1980, pp. 793–803.

    Google Scholar 

  5. Vallance A., Doughtie V.L.,Design of Machine Members, Mc Graw Hill, New York, 1938.

    Google Scholar 

  6. Dimentberg F.M.,Flexural Vibrations of Rotating Shafts, Butterworths, London, 1961.

    Google Scholar 

  7. Cowper G.R.,The Shear Coefficient in Timoshenko's Beam Theory, Journ. of Appl. Mech., june 1966, pp 335–340.

  8. Thomas D.L., Wilson J.M., Wilson R.R.,Timoshenko Beam Finite Elements, Journ. of Sound and Vibration, vol. 31, n. 3, 1973, pp. 315–330.

    Google Scholar 

  9. Archer J.S.,Consistent Matrix Formulations for Structural Analysis Using Finite Element Techniques, AIAA Journ., vol. 3, n. 10, oct 1965, pp. 1910–1918.

    MATH  MathSciNet  Google Scholar 

  10. Kushul' M.Y.,The Self-Induced Oscillations of Rotors, Consultants Bureau, New York, 1964.

    Google Scholar 

  11. ———, DYFRA —User's handbook, Lujuustekniikka oy, Tampere, Finland, 1979.

    Google Scholar 

  12. Den Hartog J.P.,Mechanical Vibrations, Mc Graw-Hill, New York, 1956.

    Google Scholar 

  13. Ramanujam G., Bert C.W.,Whirling and stability of Flywheel Systems, Part I: Derivation of Combined and Lumped Parameter Models; Part II: Comparison of Numerical Results Obtained with Combined and Lumped Parameter Models, Journ. of Sound and Vibration, vol. 88, n. 3, 1983, pp. 369–420.

    ADS  Google Scholar 

  14. Lund J.W.,Stability and Damped Critical Speed of a Flexible Rotor in Fluid-Film Bearings, Journ of Eng. for Industry, may 1974, pp. 509–517.

  15. Przemieniecki J.S.,Theory of Matrix Structural Analysis, Mc Graw Hill, New York, 1968.

    Google Scholar 

  16. Zienkiewicz O.C.,The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971.

    Google Scholar 

  17. Gallagher R.H.,Finite Element Analysis Fundamentals, Prentice Hall, Englewood Cliffs, 1975.

    Google Scholar 

  18. Rouch K.E., Kao J.S.,Dynamic Reduction in Rotor Dynamics by the Finite Element Method, Journ. of Mech. Design, apr. 1980, vol. 102, pp. 360–368.

    Google Scholar 

  19. Thompson W.T., Younger F.C., Gordon H.S.,Whirl Stability of the Pendulously Supported Flywheel System, Jour. of Appl. Mech., ASME Paper 77-APM-20, 1977.

  20. Genta G.,Design and Construction of a Spin Test Facility for High Energy Density Flywheels, Italian Machinery and Equipment, may 1980, n. 57, pp. 39–46.

    Google Scholar 

  21. Giovannozzi R.,Costruzione di macchine, Patron, Bologna, 1962.

    Google Scholar 

  22. Genta G., Gugliotta A., Brussino G.,Un codice di calcolo per l'analisi dinamica dei rotori, Il progettista industriale, july 1984.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genta, G. Consistent matrices in rotor dynamic. Meccanica 20, 235–248 (1985). https://doi.org/10.1007/BF02336935

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02336935

Keywords

Navigation