Skip to main content
Log in

Analysis of PCP-data to determine the fraction of cells in the various phases of cell cycle

  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Summary

Mathematical models for the analysis of pulse-cytophotometric (PCP) data are described. With computer programs based on these models the fractions of cells in G1-, S- and(G2 + M)-phases are obtained. The methods are applied to PCP measurements of Ehrlich ascites tumor cells, human bone marrow cells and L-929-cells in culture. The results of the L-cell experiment are compared with autoradiographic results; for both methods the duration of the various phases has been calculated. Two different mathematical models for PCP-data evaluation and the autoradiographic method yielded results agreeing within statistical error. The application of the two models on different types of DNA-histograms is discussed: One model is suitable for asynchronous cell populations with a low fraction of S-phase cells, the other can be applied for partially synchronized cells and high S-phase fractions as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charbit, A., Malaise, E. P., Tubiana, M.: Relation between the pathological nature and the growth rate of human tumors. Europ. J. Cancer7, 307–309 (1971)

    Google Scholar 

  2. Cleaver, J. E.: Thymidine metabolism and cell kinetics. In: Frontiers of biology, Vol. 6 (Neuberger, A., Tatum, P. L.,Eds.). Amsterdam 1967

  3. Dean, P. N., Jett, J. H.: Mathematical analysis of DNA distributions derived from flow microfluorometry. J. Cell Biol.60, 523–527 (1974)

    Article  Google Scholar 

  4. Dittrich, W., Göhde, W.: Phase progression in two dose response of Ehrlich ascites tumour cells. Atomkernenergie15-36, 174–176 (1970)

    Google Scholar 

  5. Fabrikant, J. I., Cherry, J.: The kinetics of cellular proliferation in normal and malignant tissues. V. Analysis of labeling indices and potential tissue doubling times in human tumour cell populations. J. surg. Oncol.1, 23–34 (1969)

    Google Scholar 

  6. Göhde, W.: Zellzyklusanalysen mit dem Impulscytophotometer. Der Einfluß chemischer und physikalischer Noxen auf die Proliferationskinetik von Tumorzellen. Habilitationsschrift, Medizinische Fakultät, Münster 1973

    Google Scholar 

  7. Göhde, W., Dittrich, W.: Die cytostatische Wirkung von Daunomycin im Impulscytophotometrie-Test. Arzneimittel-Forsch.21, 1656–1658 (1971)

    Google Scholar 

  8. Göhde, W., Dittrich, W.: Impulsfluorometrie - Ein neuartiges Durchflußverfahren zur ultraschnellen Mengenbestimmung von Zellinhaltsstoffen. Acta histochem. (Jena)10 (Suppl.), 429–437 (1971)

    Google Scholar 

  9. Göhde, W.: Automation of cytofluorometry by use of the Impulsmicrophotometer. In: Fluorescence techniques in cell biology, pp. 79–88 (Thaer, A. A., Sernetz, M.,Eds.). Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  10. Howard, A., Pelc, S. R.: Synthesis of DNA in normal and irradiated cells and its relation to chromosome breakage. Heredity6 (Suppl.), 261–273, Symposium on Chromosome Breakage, Edinburgh (1953)

    Google Scholar 

  11. König, K., Linden, W. A., Canstein, M. v., Baisch, H., Canstein, L. v.: DNA-synthesis in synchronized L-cells after irradiation in the G1-phase of the cell cycle. Rad. andEnvironm. Biophys.12, 23–30 (1975)

    Google Scholar 

  12. Lennartz, K. J., Maurer, W., Eder, M.: Auswertungsverfahren bei Doppelmarkierung mit C14- und H3-Thymidin für exponentielles Wachstum. Histochemie13, 84–90 (1968)

    Article  Google Scholar 

  13. Madoc-Jones, H.: A review of the action of various chemotherapeutic agents on mammalian cells in the different phases of the cell generation cycle. Possible clinical implications. (In press)

  14. Quastler, H., Sherman, F. G.: Cell population kinetics in the intestinal epithelium of the mouse. Exp. Cell Res.17, 420–438 (1959)

    Article  Google Scholar 

  15. Rajewsky, M. F.: Synchronisationin vivo: Kinetics of a malignant cell system following temporary inhibition of DNA synthesis with hydroxyurea. Exp. Cell Res.60, 269–276 (1970)

    Article  Google Scholar 

  16. Rajewsky, M. F., Grüneisen, A., Renner, I.: Modification of proliferative parameters by temporary inhibition of DNA synthesis. Studia biophysica31/32, 367–374 (1972)

    Google Scholar 

  17. Reddy, S. B., Erbe, W., Linden, W. A., Landen, H., Baigent, C.: Die Dauer der Phasen im Zellzyklus von L-929-Zellen. Vergleich von impulscytophotometrischen und autoradiographischen Messungen. Biophysik10, 45–50 (1973)

    Article  Google Scholar 

  18. Sinclair, W. K.: Hydroxyurea: Differential lethal effects on cultured mammalian cells during the cell cycle. Science150, 1729–1731 (1965)

    ADS  Google Scholar 

  19. Sinclair, W. K.: Cyclic X-ray responses in mammalian cellsin vitro. Radiat. Res.33, 620–643 (1968)

    Google Scholar 

  20. Tubiana, M.: The kinetics of tumour cell proliferation and radiotherapy. Brit. J. Radiol.44, 325–347 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft Bonn-Bad Godesberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baisch, H., Göhde, W. & Linden, W.A. Analysis of PCP-data to determine the fraction of cells in the various phases of cell cycle. Radiat Environ Biophys 12, 31–39 (1975). https://doi.org/10.1007/BF02339807

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02339807

Keywords

Navigation