Skip to main content
Log in

Different characteristics of roots in the cadmium-tolerance and Cd-binding complex formation between mono- and dicotyledonous plants

  • Original Articles
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Effects of Cd2+ on growth and Cd-binding complex formation in roots were examined with various seedlings of mono- and dicotyledonous plants. Maize, oat, barley and rice exhibited the greater tolerance to Cd2+ (100 μM) than did azuki bean, cucumber, lettuce, pea, radish, sesame and tomato (10–30 μM). Azuki bean was the most sensitive to Cd2+ (<10 μM). Under these Cd-treatments, cereal roots accumulated Cd2+ in the cytoplasmic fractions and transported Cd2+ into the same fractions of shoot tissues, to larger extents than did dicotyledonous roots. Cereal roots synthesized a Cd-binding complex containing phytochelatins in the cytoplasmic fractions, depending upon Cd2+ concentrations applied (30–100 μM). Such a complex was not detected from the same fractions of dicotyledonous roots treated with Cd2+. These results suggest that the Cd-binding complex formation has an important role in the tolerance of cereal roots against Cd2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GPC:

gel-permeation chromatography

GSH:

glutathione

HPLC:

high-performance liquid chromatography

PC:

phytochelatin

PCMB:

p-chloromercuribenzoate

TFA:

trifluoroacetic acid

References

  • Delhaize, E., Jackson, P.J., Lujan, L.D. andRobinson, N.J. 1989. Poly (γ-glutamylcysteinyl) glycine synthesis inDatura innoxia and binding with cadmium. Plant Physiol.89: 700–706.

    CAS  Google Scholar 

  • Fujita, M. andKawanishi, T. 1987. Cd-binding complexes from the root tissues of various higher plants cultivated in a Cd2+-containing medium. Plant Cell Physiol.28: 379–382.

    CAS  Google Scholar 

  • Gekeler, W., Grill, E., Winnacker, E.-L. andZenk, M.H. 1989. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z. Naturforsch.44c: 361–369.

    Google Scholar 

  • Grill, E., Loffler, S., Winnacker, E.-L. andZenk, M.H. 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA.86: 6838–6842.

    CAS  Google Scholar 

  • Grill, E., Winnacker, E.-L. andZenk, M.H. 1985. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science230: 674–676.

    CAS  Google Scholar 

  • Grill, E., Winnacker, E.-L. andZenk, M.H. 1986. Synthesis of seven different homologous phytochelatins in metal-exposedSchizosaccharomyces pombe cells. FEBS Lett.197: 115–120.

    Article  CAS  Google Scholar 

  • Gupta, S.C. andGoldsbrough, P.B. 1991. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol.97: 306–312.

    CAS  Google Scholar 

  • Hardiman, R.T. andJacoby, B. 1984. Absorption and translocation of Cd in bush beans (Phaseolus vulgaris). Physiol. Plant.61: 670–674.

    CAS  Google Scholar 

  • Hoagland, D.R. and Arnon, D.I. 1950. The water-culture method for growing plants without soil. California Agricultural Experiments Station Circular No. 347.

  • Inouhe, M., Hiyama, M., Tohoyama, H., Joho, M. andMurayama, T. 1989. Cadmium-binding protein in a cadmium-resistant strain ofSaccharomyces cerevisiae. Biochim. Biophys. Acta993: 51–55.

    CAS  PubMed  Google Scholar 

  • Inouhe, M., Inagawa, A., Morita, M., Tohoyama, H., Joho, M. andMurayama, T. 1991a. Native cadmium-metallothionein from the yeastSaccharomyces cervisiae: its primary structure and function in heavy metal resistance. Plant Cell Physiol.32: 475–482.

    CAS  Google Scholar 

  • Inouhe, M., Mitsumune, M., Tohoyama, H., Joho, M. andMurayama, T. 1991b. Contributions of cell wall and metal-binding peptide to Cd- and Cu-tolerances in suspension-cultured cells of tomato. Bot. Mag. Tokyo104: 217–229.

    Google Scholar 

  • Inouhe, M., Tohoyama, H., Joho, M. andMurayama, T. 1992. Changes in cell wall and cytoplasmic components in plants in response to heavy-metal ions.In Plant Cell Walls as Biopolymers with Physiological Functions. Yamada Science Foundation, Osaka. pp 407–409.

    Google Scholar 

  • Kondo, N., Imai, K., Isobe, M., Goto, T., Murasugi, A., Nakagawa, C.W. andHayashi, Y. 1984. Cadystin A and B, major unit peptides comprising cadmium binding peptides induced in a fission yeast-separation, revision of structures and synthesis. Tetrahedron Lett.25: 3869–3872.

    Article  CAS  Google Scholar 

  • Kubol, T., Noguchi, A. andYazaki, J. 1987. Relationship between tolerance and accumulation characteristics of cadmium in higher plants. Plant Soil.104: 275–280.

    Google Scholar 

  • Matsumoto, Y., Okada, Y., Min, K.-S., Onozaka, S. andTanaka, K. 1990. Amino acids and peptides. XXVII. Synthesis of phytochelatin-related peptides and examination of their heavy metal-binding properties. Chem. Pharm. Bull.38: 2364–2368.

    CAS  PubMed  Google Scholar 

  • Mehra, R.K., Tarbet, E.B., Gray, W.R. andWinge, D.R. 1988. Metal-specific synthesis of two metallothioneins and γ-glutamyl peptides inCandida glabrata. Proc. Natl. Acad. Sci. USA.85: 8815–8819.

    CAS  PubMed  Google Scholar 

  • Mehra, R.K. andWinge, D.R. 1991. Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J. Cell. Biochem.45: 30–40.

    Article  CAS  PubMed  Google Scholar 

  • Murasugi, A., Wada, C. andHayashi, Y. 1981. Purification and unique properties in UV and CD spectra of Cd-binding peptide fromSchizosaccharomyces pombe. Biochem. Biophys. Res. Commun.103: 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  • Mutoh, N. andHayashi, Y. 1988. Isolation of mutants ofSchizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochem. Biophys. Res. Commun.151: 32–39.

    CAS  PubMed  Google Scholar 

  • Nussbaum, S., Schmutz, D. andBrunold, C. 1988. Regulation of assimilatory sulfate reduction by cadmium inZea mays L. Plant Physiol.88: 1407–1410.

    CAS  Google Scholar 

  • Obata, H. andUmebayashi, M. 1993. Production of SH compounds in higher plants of different tolerance to Cd. Plant Soil155/156: 533–536.

    Article  Google Scholar 

  • Rauser, W.E. 1990. Phytochelatins. Annu. Rev. Biochem.59: 61–86.

    Article  CAS  PubMed  Google Scholar 

  • Rauser, W.E., Schupp, R. andRennenberg, H. 1991. Cysteine, γ-glutamylcysteine, and glutathione levels in maize seedlings. Plant Physiol.97: 128–138.

    CAS  Google Scholar 

  • Reese, R.N. andWagner, G.J. 1987. Effects of buthionine sulfoximine on Cd-binding peptide levels in suspension-cultured tobacco cells treated with Cd, Zn, or Cu. Plant Physiol.84: 574–577.

    CAS  Google Scholar 

  • Reese, R.N. andWinge, D.R. 1988. Sulfide stabilization of cadmium-γ-glutamyl peptide complexes ofSchizosaccharomyces pombe. J. Biol. Chem.263: 12832–12835.

    CAS  PubMed  Google Scholar 

  • Reese, R.N., White, C.A. andWinge, D.R. 1992. Cadmium-sulfide crystallites in Cd-(γEC)nG peptide complexes from tomato. Plant Physiol.98: 225–229.

    CAS  Google Scholar 

  • Ruegsegger, A. andBrunold, C. 1992. Effect of cadmium on γ-glutamyl-cysteine synthesis in maize seedlings. Plant Physiol.99: 428–433.

    Google Scholar 

  • Scheller, H.V., Huang, B., Hatch, E. andGoldsbrough, P.B. 1987. Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol.85: 1031–1035.

    CAS  Google Scholar 

  • Senden, M.H.M.N., Van Paassen, F.J.M., Van der Meer, A.J.G.M. andWolterbeek, H.Th. 1992. Cadmiumcitric acid-xylem cell wall interactions in tomato plants. Plant Cell Environ.15: 71–79.

    CAS  Google Scholar 

  • Steffens, J.C. 1990. The heavy metal-binding peptides of plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.41: 553–575.

    CAS  Google Scholar 

  • Steffens, J.C., Hunt, D.F. andWilliams, B.G. 1986. Accumulation of non-protein metal-binding polypeptides in selected cadmium resistant tomato cells. J. Biol. Chem.261: 13879–13882.

    CAS  PubMed  Google Scholar 

  • Verkleij, J.A.C., Koevoets, P., Van't Reit, J., Bank, R., Nijdam, Y. andErnst, W.H.O. 1990. Poly-gamma-glutamylcysteinylglycines or phytochelatins and their role in cadmium tolerance ofSilene vulgaris. Plant Cell Environ.13: 913–922.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inouhe, M., Ninomiya, S., Tohoyama, H. et al. Different characteristics of roots in the cadmium-tolerance and Cd-binding complex formation between mono- and dicotyledonous plants. J. Plant Res. 107, 201–207 (1994). https://doi.org/10.1007/BF02344245

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344245

Key words

Navigation