Skip to main content
Log in

Finite element analysis of brain contusion: An indirect impact study

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The mechanism of brain contusion has been investigated using a series of three-dimensional (3D) finite element analyses. A head injury model was used to simulate forward and backward rotation around the upper cervical vertebra. Intracranial pressure and shear stress responses were calculated and compared. The results obtained with this model support the predictions of cavitation theory that a pressure gradient develops in the brain during indirect impact. Contrecoup pressure-time histories in the parasagittal plane demonstrated that an indirect impact induced a smaller intracranial pressure (−53.7 kPa for backward rotation, and −65.5 kPa for forward rotation) than that caused by a direct impact. In addition, negative pressures induced by indirect impact to the head were not high enough to form cavitation bubbles, which can damage the brain tissue. Simulations predicted that a decrease in skull deformation had a large effect in reducing the intracranial pressure. However, the areas of high shear stress concentration were consistent with those of clinical observations. The findings of this study suggest that shear strain theory appears to better account for the clinical findings in head injury when the head is subjected to an indirect impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, A. M. (1987): ‘Skull radiograph measurements of normals and patients with basilar impression; use of Landzert's angle’,Surg. Radiol. Anat.,9, pp. 225–229

    Article  Google Scholar 

  • Chu, C. S., Lin, M. S., Huang, H. M. andLee, M. C. (1994): ‘Finite element analysis of cerebral contusion’,J. Biomech.,27, pp. 187–194

    Article  Google Scholar 

  • Dawson, S. L., Hirsch, C. S., Lucas, F. V. andSebek, B. A. (1980): ‘The contrecoup phenomenon: reappraisal of a classic problem’,Human Pathol.,11, pp. 155–166

    Google Scholar 

  • Gere, J. M. andTimoshenko, S. P. (1984): ‘Three-dimensional stress’ inGere, J. M. andTimoshenko, S. P. (Eds). ‘Mechanics of materials’ (Wadsworth, California), pp. 323–326

    Google Scholar 

  • Gennarelli, T. A. andThibault, L. E. (1982): ‘Biomechanics of acute subdural hematoma’,J. Trauma,22, pp. 680–686

    Google Scholar 

  • Grabb, P. A., Mapstone, T. B., andOakes, W. J. (1999): ‘Ventral brain stem compression in pediatric and young adult patients with Chiari I malformations’,Neurosurgery,44, pp. 520–528

    Google Scholar 

  • Gross, A. G. (1958): ‘A new theory on the dynamics of brain concussion and brain injury’,J. Neurosurg.,15, pp. 548–561

    Google Scholar 

  • Gurdjian, E. S., Lissner, H. R., Evans, F. G., Patrick, L. M., andHardy, W. G. (1961): ‘Intracranial pressure and acceleration accompanying head impact in human cadavers’,Surg. Gynec. Obstes.,113, pp. 185–190

    Google Scholar 

  • Gurdjian, E. S., Lissner, H. R., andPatrick, L. M. (1962): ‘Protection of the head and neck in sports’,JAMA,182, pp. 509–521

    Google Scholar 

  • Gurdjian, E. S., Lissner, H. R., andHodgson, V. R. (1966): ‘Mechanisms of head injury’,Clin. Neurosurg.,12, pp. 112–128

    Google Scholar 

  • Holbourn, A. H. S. (1943): ‘Mechanics of head injuries’,Lancet,2, pp. 438–441

    Google Scholar 

  • Holbourn, A. H. S. (1945): ‘The mechanics of brain injuries’Br. Med. Bull.,3, pp. 147–149

    Google Scholar 

  • Hosey, R. R. andLiu, Y. K. (1982): A homeomorphic finite element model of human head and neck’ inGallagher, R. H., Simon, B. R., Johnson, P. C., andGross, J. F. (Eds): ‘Finite element in biomechanics’ (Wiley), pp. 379–401

  • Huang, H. M., Lee, M. C., Chiu, W. T., Chen, C. T., andLee, S. Y. (1999): ‘Three-dimensional finite element analysis of subdural hematoma’,J. Trauma,47, (3), pp. 538–544

    Google Scholar 

  • Khalil, T. B. andHubbard, R. P. (1977): ‘Parametric study of head response by finite element modeling’,J. Biomech.,10, pp. 119–132

    Article  Google Scholar 

  • Krabbel, G. andAppel, H. (1995): ‘Development of a finite element model of the human skull’,J. Neurotrauma,12, (4), pp. 735–742

    Google Scholar 

  • Kumaresan, S., Radhakrishnan, S., andGanesan, N. (1995): ‘Generation of geometry of closed human head and discretisation for finite element analysis’,Med. Biol. Eng. Comput.,33, pp. 359–353

    Google Scholar 

  • Kumaresan, S. andRadhakrishnan, S. (1996): ‘Importance of partitioning membranes of the brain and the influence of the neck in head injury modelling’,Med. Biol. Eng. Comput.,34, pp. 27–32

    Google Scholar 

  • Lee, M. C., Ueno, K., andMelvin, J. W. (1987): ‘Finite element analysis of traumatic subdural hematoma’, Proc. 31st Stapp Car Crash Conf., pp. 67–77

  • Lubock, P. andGoldsmith, W. (1980): ‘Experimental cavitation studies in a model headneck system’,J. Biomech.,13, pp. 1041–1052

    Article  Google Scholar 

  • Margulies, S. S. andThibault, C. E. (1989): ‘An analytical model of traumatic diffuse brain injury’,J. Biomech. Eng.,111, pp. 242–248

    Google Scholar 

  • McComb, J. G., Withers, G. J., andDavis, R. L. (1981): ‘Cortical damage from zenker's solution applied to the dura mater’,Neurosurgery,8, pp. 68–71

    Google Scholar 

  • Melvin, J. W., McElhaney, J. H., andRobert, V. L. (1970): ‘Development of a mechanical model of the human head-Determination of tissue properties and synthetic substitute materials’. Proc. 14th Stapp Car Crash Conf., pp. 221–240

  • Mietner, E. andSalwender, H. J. (1995): ‘Influencing factors on the injury severity of restrained front seat occupants in car-to-car head-on collision’,Accid. Anal. Prev.,27, pp. 143–150

    Google Scholar 

  • Nahum, A. M., Smith, R., andWard, C. C. (1977): ‘Intracranial pressure dynamics during head impact’. Proc. 21st Stapp Car Crash Conf., pp. 339–366

  • Ommaya, A. K., Hirsch, A. E., andMartinez, J. L. (1966): ‘The role of whiplash in cerebral concussion’. Proc. 10th Stapp Car Crash Conf., pp. 197–203

  • Ommaya, A. K., Grubb, R. L., Jr., andNaumann, R. A. (1971): ‘Coup and contre-coup injury: observations on the mechanics of visible brain injuries in the rhesus monkey’,J. Neurosurg.,35, pp. 503–516

    Google Scholar 

  • Ommaya, A. K. (1995): ‘Head injury mechanisms and the concept of preventive management: a review and critical synthesis’,J. Neurotrauma,12, pp. 527–546

    Google Scholar 

  • Penning, L. (1979): ‘Normal movements of the cervical spine’,Am. J. Roantgenol.,130, pp. 317–324

    Google Scholar 

  • Ruane, J. S., Khalil, T., andKing, A. I. (1991): ‘Human head dynamic response to side impact by finite element modeling’,J. Biomech. Eng.,113, pp. 276–283

    Google Scholar 

  • Ruan, J. S., Khalil, T., andKing, A. I. (1994): ‘Dynamic response of the human head to impact by three-dimensional finite element analysis’,J. Biomech. Eng.,116, pp. 44–50

    Google Scholar 

  • Sano, K., Nalammura, N., Hirakawa, K.,et al., (1967): ‘Mechanism and dynamics of closed head injuries’,Neurol. Medico-chirurgica,9, pp. 21–33

    Google Scholar 

  • Shugar, T. A. (1977): ‘A finite element head injury model-volume I: theory, development, and results’. U.S. Department of Transportation Report No. DOT-HS-289-3-550-IA

  • Thomas, P. andBradford, M. (1995): ‘The nature and source of the head injuries sustained by restrained front-seat car occupants in frontal collisions’,Accid. Anal. Prev.,27, pp. 561–570

    Article  Google Scholar 

  • Voo, L., Kumaresan, S., Pintar, F. A., Yoganandan, N., andSances, A. (1996): ‘Finite-element models of the human head’,Med. Biol. Eng. Comput.,34, pp. 375–381

    Google Scholar 

  • Ward, C. C. andThompson, R. B. (1975): ‘The development of a detailed finite element brain model’. Proc. 19th Stapp Car Crash Conf., pp. 641–674

  • White, A. A. andPanjabi, M. M. (1990): ‘Kinematics of the spine’ inWhite, A. A. andPanjabi, M. M. (Eds). ‘Clinical biomechanics of the spine’ (Lippincott, Philadelphia), pp. 85–125

    Google Scholar 

  • White, F. M. (1986): ‘Pressure distribution in a fluid’ inWhite, F. M. (Eds): ‘Fluid mechanics’ (McGraw-Hill, New York), pp. 51–92

    Google Scholar 

  • Willinger, R., Taleb, L., andKopp, C. M. (1995): ‘Modal and temporal analysis of head mathematical models’,J. Neurotrauma,12, pp. 743–754

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H.M., Lee, M.C., Lee, S.Y. et al. Finite element analysis of brain contusion: An indirect impact study. Med. Biol. Eng. Comput. 38, 253–259 (2000). https://doi.org/10.1007/BF02347044

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02347044

Keywords

Navigation