Skip to main content
Log in

From FeNi-Invar to FeNiMn reentrant spin-glasses

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Thirty years of Mössbauer spectroscopy correspond roughly to twenty-five years of FeNi-invar research using this method. The first systematic study of hyperfine fields in FeNi alloys, in both bcc and fcc phases, appeared in 1963, the first spectra were published probably in 1964. A very important fact is that fcc iron is an antiferromagnet; however, this iron phase is unstable at low temperature. In 1963, the possibility of performing low-temperature Mössbauer spectroscopy experiments on fcc iron precipitates in copper was shown. We shall demonstrate that the low temperature57Fe Mössbauer spectra reveal a spatially inhomogeneous magnetic structure in FeNi-invar alloys. This structure corresponds to magnetic invar anomalies. From the viewpoint of basic research in magnetism, it was opportune to enhance these anomalies. One possible way to do this was the alloying of manganese into the invar matrix. In this contribution, we limited our examples to the study of the classical Fe0.65Ni0.35 and the new (Fe0.65Ni0.35)1−x .Mn x alloys, and refer to the literature with respect to other transition metal systems with similar properties. We will show the goal of Mössbauer spectrometry investigating the spin structure in disordered alloy systems via the vector nature of the hyperfine fields. Additionally, the combination of Mössbauer spectrometry with global techniques, i.e. DC magnetization and AC susceptibility allowed us to study the changes in magnetic properties of our disordered 3d transition metal alloys from a nearly collinear ferromagnet (pure FeNi-invar) over the reentrant spin-glasses and “pure” concentrated spinglasses towards the antiferromagnetic behaviour by varying the manganese concentration in small steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Physics and Applications of Invar Alloys, Honda Memorial Series, No. 3 (Maruzen Co. Ltd., Tokyo, 1978).

  2. Y. Nakamura, IEEE MAG-12(1976)278.

    Google Scholar 

  3. V.L. Sedov, in:Antiferromagnetism of Gamme-Iron, The Invar Problem (Nauka, Moscow, 1987), in russian.

    Google Scholar 

  4. E.F. Wassermann, in:Invar: A New Approach to an Old Problem of Magnetism, Festkörperprobleme 27(1987)85.

    Google Scholar 

  5. M. Hayase, M. Shiga and Y. Nakamura, J. Phys. Soc. Japan 34(1973)925.

    Google Scholar 

  6. M. Matsui and S. Chikazumi, J. Phys. Soc. Japan 45(1978)458.

    Google Scholar 

  7. Y. Tanji, J. Phys. Soc. Japan 31(1971)1366.

    Google Scholar 

  8. J. Crangle and G.C. Hallam, Proc. Roy. Soc. London A272(1963)125.

    Google Scholar 

  9. J.B. Müller and J. Hesse, Z. Phys. B54(1983)35.

    Google Scholar 

  10. J.B. Müller and J. Hesse, Z. Phys. B54(1983)43.

    Google Scholar 

  11. V.I. Chechernikov, Sov. Phys. JETP 15(1962)659.

    Google Scholar 

  12. E.I. Kondorskii and V.L. Sedov, Sov. Phys. JETP 11(1960)561; J. Appl. Phys. 31(1960)331.

    Google Scholar 

  13. C.E. Johnson, M.S. Ridout and T.E. Cranshaw, Proc. Roy. Soc. London 81(1963)1079.

    Google Scholar 

  14. A.Z. Menshikov and E.E. Yurchikov, Sov. Phys. JETP 36(1973)100.

    Google Scholar 

  15. U. Gonser, S. Nasu and W. Kappes, JMMM 10(1979)244.

    ADS  Google Scholar 

  16. Y. Nakamura and M. Shiga, J. Phys. Soc. Japan 19(1964)1177.

    Google Scholar 

  17. U. Erich, Z. Phys. 227(1969)25.

    Google Scholar 

  18. U. Gonser, C.J. Meechan, A.H. Muir and H. Wiedersich, J. Appl. Phys. 34(1963)2373.

    Article  Google Scholar 

  19. A.Z. Menshikov, JMMM 10(1979)205.

    ADS  Google Scholar 

  20. V.A. Makarov, I.M. Puzei and T.V. Sakharova, Phys. Stat. Sol. (a) 30(1975)K21.

    Google Scholar 

  21. V.A. Makarov, I.M. Puzei, T.V. Sakharova and I.G. Gutovskii, Sov. Phys. JETP 67(1974)771.

    Google Scholar 

  22. H. Ullrich and J. Hesse, JMMM 45(1984)315.

    ADS  Google Scholar 

  23. H. Ullrich, B. Huck and J. Hesse, in:Applications of the Mössbauer Effect, ed. E. Reynolds and V.A. Goldanskii (Gordon and Breach, New York, 1985) p. 711.

    Google Scholar 

  24. U. Gonser and H. Fischer, in:Mössbauer Spectroscopy II, ed. U. Gonser (Springer-Verlag, Berlin, 1981) pp. 99–135.

    Google Scholar 

  25. B. Window, J. Phys. E4(1971)401.

    ADS  Google Scholar 

  26. J. Hesse and A. Rübartsch, J. Phys. E7(1974)526.

    ADS  Google Scholar 

  27. M. Shiga, T. Satake, Y. Wada and Y. Nakamura, JMMM 51(1985)123.

    ADS  Google Scholar 

  28. B. Huck and J. Hesse, JMMM (1989), to appear.

  29. B. Huck, Thesis, Technische UniversitÄt Braunschweig (1988).

  30. W.M. Saslow and G. Parker, Phys. Rev. Lett. 56(1985)321.

    Google Scholar 

  31. J. Landes, Diplomarbeit, Technische UniversitÄt Braunschweig (1987).

  32. D.G. Rancourt, H.H.A. Smit, and R.C. Thiel, JMMM 66(1987)121.

    ADS  Google Scholar 

  33. J. Hesse and E. Hagen, Hyp, Int. 28(1986)475.

    Article  Google Scholar 

  34. D.C. Price and A.M. Steward, Hyp. Int. 42(1988)1157.

    Google Scholar 

  35. V. Cannella and J.A. Mydosh, Phys. Rev. 86(1972)4220.

    Google Scholar 

  36. J. Hesse and Chr. Buchal, Int. J. Magn. 5(1973)11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesse, J. From FeNi-Invar to FeNiMn reentrant spin-glasses. Hyperfine Interact 47, 357–378 (1989). https://doi.org/10.1007/BF02351618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02351618

Keywords

Navigation