Skip to main content
Log in

New signal processing techniques for improved precision of noninvasive impedance cardiography

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Impedance cardiographic determination of clinically important cardiac parameters such as systolic time intervals, stroke volume, and related cardiovascular parameters has not yet found adequate application in clinical practice, since its theoretical basis remains controversial, and the precision of beat-to-beat parameter estimation has until recently suffered under severe shortcomings of available signal processing techniques. High levels of noise and motion artifacts deteriorate signal quality and result in poor event detection. To improve the precision of impedance cardiography, new techniques for event detection and parameter estimation have been developed. Specifically, matched filtering and various signal segmentation and decomposition techniques have been tested on impedance signals with various levels of artificially superimposed noise and on actual recordings from subjects in a laboratory study of cardiovascular response to a cognitive challenge. Substantial improvement in the precision of impedance cardiography was obtained using the newly developed signal processing techniques. In addition, some preliminary evidence from comparisons of the impedance cardiogram with invasive aortic electromagnetic flow measurement in anesthetized rabbits is presented to address questions relating to the origin of the impedance signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appel, P.L.; Kram, H.B.; MacKabee, J.; Flemming, A.W.; Shoemaker, W.C. Comparison of measurements of cardiac output by bioimpedance and thermodilution in severely ill surgical patients. Crit. Care Med. 14:933–935; 1986.

    CAS  PubMed  Google Scholar 

  2. Aust, P.E.; Belz, G.G.;et al. Comparison of impedance cardiography and echocardiography for measurement of stroke volume. Eur. J. Clin. Pharmacol. 23:475; 1982.

    Article  CAS  PubMed  Google Scholar 

  3. Bernstein, D.P. Continuous non-invasive real-time monitoring of stroke volume and cardiac output by thoracic electrical bioimpedance. Crit. Care Med. 14:10:898–901; 1986.

    CAS  PubMed  Google Scholar 

  4. Bleicher, W.; Steil, E.; Fiderer, F.; Wolf, M.; Faust, U. Non-invasive monitoring of heart function with the aid of the automatically processed impedance cardiogram. Proceedings of the Vth ICEBI. Tokyo, 57–59; 1981.

  5. Denniston, J.C.; Maher, J.T.; Reeves, J.T.;et al. Measurement of cardiac output by electrical impedance at rest and during exercise. J. Appl. Physiol. 40:91; 1976.

    CAS  PubMed  Google Scholar 

  6. Donovan, K.D.; Dobb, G.L.; Woods, W.P.D.;et al. Transthoracic electrical impedance and thermodilution methods for measuring cardiac output. Crit. Care Med. 14:1038–1044; 1986.

    CAS  PubMed  Google Scholar 

  7. Edmunds, A.T.; Godfrey, S.; Tooley, M. Cardiac output measured by transthoracic impedance cardiography at rest, during exercise and at various lung volumes. Clin. Sci. 63:107; 1982.

    CAS  PubMed  Google Scholar 

  8. Keim, J.H.; Wallace, J.M.; Thurston, H.;et al. Impedance cardiography for determination of stroke index. J. Appl. Physiol. 41:797; 1976.

    CAS  PubMed  Google Scholar 

  9. Kubicek, W.G.; Karnegis, J.N.; Patterson, R.P.; Witsoe, D.A.; Mattson, R.H. Development and evaluation of an impedance cardiac output system. Aerospace Medicine 39:248–252; 1966.

    Google Scholar 

  10. Lamberts, R.; Visser, K.R.; Zijlstra, W.G. Impedance Cardiography. Assen, The Netherlands: Van Gorcum; 1984; pp. 94–106.

    Google Scholar 

  11. Larsen, P.B.; Schneiderman, N.; Pasin, R.D. Physiological bases of cardiovascular psychophysiology. In: Coles, M.; Danchin, E.; Porges, S., eds. Psychophysiology: Systems, Processes and Applications. New York: Guilford Press; 1986, pp. 122–165.

    Google Scholar 

  12. Miller, J.C.; Horvath, S.M. Impedance cardiography. Psychophysiology. 40:80; 1978.

    Google Scholar 

  13. Muzi, M.; Jeutter, D.C.; Smith, J.J. Computer-automated impedance-driven cardiac indexes. IEEE Transactions on Biomedical Engineering. BME-33, No. 1:42–47; 1986.

    CAS  Google Scholar 

  14. Nagel, J. Method and apparatus for identifying recurring signal patterns. US patent No. 4,211,237; 1980.

  15. Ritz, R.; Furrer, M. Trendbeobachtung des schlagvolumens bei intensivpatienten aufgrund der kontinuierlich registrierten elektrischen impedanz. Intensivmed. 21:132; 1984.

    Google Scholar 

  16. Saab, P.G.; Matthews, K.A.; Stoney, C.M.; McDonald, R.H. Premenopausal and postmenopausal women differ in their cardiovascular and neuroendocrine responses to behavioral stressors. Psychophysiology, in press.

  17. Secher, N.J.; Thomsen, A.; Arnsbo, P. Measurement of rapid changes in cardiac stroke volume. An evaluation of the impedance cardiography method. Acta. Anaesth. Scand. 21:353; 1977.

    CAS  PubMed  Google Scholar 

  18. Sheps, D.S.; Petrovick, M.L.; Kizakevich, P.N.; Wolfe, C.; Craige, E. Continuous noninvasive monitoring of left ventricular function during exercise by thoracic impedance cardiography-automated derivation of systolic time intervals. American Heart Journal. 103:519–524; 1982.

    Article  CAS  PubMed  Google Scholar 

  19. Sherwod, A.; Allen, M.T.; Langer, A.W. Evaluation of beta-adrenergic influences on cardiovascular and metabolic adjustments to physical and psychological stress. Psychophysiology. 23:89–104; 1986.

    Google Scholar 

  20. Sherwood, A.; Allen, M.T.; Fahrenberg, J.; Kelsey, R.M.; Lovallo, W.R.; van Doornen, L.J.P. Methodological guidelines for impedance cardiography. Psychophysiology, in press.

  21. Sramek, B.B. Cardiac output by electrical bioimpedance. Medical Electronics. April:93; 1982.

  22. Zhang, Y.; Qu, M.; Webster, J.G.; Tompkins, W.J.; Ward, B.A.; Bassett, D.R. Cardiac output monitoring by impedance cardiography during treadmill exercise. IEEE Transactions on Biomedical Engineering, BME33:1037–1042; 1986.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by program project research grant HL36588, by research grant HL41335, and by research training grant HL07426 from the National Heart, Lung and Blood Institute of NIH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel, J.H., Shyu, L.Y., Reddy, S.P. et al. New signal processing techniques for improved precision of noninvasive impedance cardiography. Ann Biomed Eng 17, 517–534 (1989). https://doi.org/10.1007/BF02368071

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368071

Keywords

Navigation